checkpointing.py 17.2 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Input/output checkpointing."""

import os
import random
import sys
import numpy as np

import torch

25
26
27
from megatron import (get_args,
                      mpu,
                      print_rank_0,
28
29
                      update_num_microbatches,
                      utils)
30

Vijay Korthikanti's avatar
Vijay Korthikanti committed
31
32
33
34
_CHECKPOINT_VERSION = None

def set_checkpoint_version(value):
    global _CHECKPOINT_VERSION
Jared Casper's avatar
Jared Casper committed
35
36
37
    if _CHECKPOINT_VERSION is not None:
        assert _CHECKPOINT_VERSION == value, \
            "checkpoint versions do not match"
Vijay Korthikanti's avatar
Vijay Korthikanti committed
38
39
40
41
42
    _CHECKPOINT_VERSION = value

def get_checkpoint_version():
    global _CHECKPOINT_VERSION
    return _CHECKPOINT_VERSION
43
44
45

def check_checkpoint_args(checkpoint_args):
    """Ensure fixed arguments for a model are the same for the input
46
    arguments and the one retrieved from checkpoint."""
47
48
    args = get_args()

49
50
51
52
53
    def _compare(arg_name, old_arg_name=None):
        if old_arg_name is not None:
            checkpoint_value = getattr(checkpoint_args, old_arg_name)
        else:
            checkpoint_value = getattr(checkpoint_args, arg_name)
54
55
56
57
58
59
60
61
62
        args_value = getattr(args, arg_name)
        error_message = '{} value from checkpoint ({}) is not equal to the ' \
                        'input argument value ({}).'.format(
                            arg_name, checkpoint_value, args_value)
        assert checkpoint_value == args_value, error_message

    _compare('num_layers')
    _compare('hidden_size')
    _compare('num_attention_heads')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
63
    if args.vocab_file:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
64
        _compare('max_position_embeddings')
65
66
67
        _compare('make_vocab_size_divisible_by')
        _compare('padded_vocab_size')
        _compare('tokenizer_type')
68
69
70
71
72
73
    if get_checkpoint_version() < 3.0:
        _compare('tensor_model_parallel_size',
                 old_arg_name='model_parallel_size')
    if get_checkpoint_version() >= 3.0:
        _compare('tensor_model_parallel_size')
        _compare('pipeline_model_parallel_size')
74
75
76
77
78
79
80
81
82
83


def ensure_directory_exists(filename):
    """Build filename's path if it does not already exists."""
    dirname = os.path.dirname(filename)
    if not os.path.exists(dirname):
        os.makedirs(dirname)


def get_checkpoint_name(checkpoints_path, iteration,
84
                        release=False):
85
86
87
88
89
    """A unified checkpoint name."""
    if release:
        directory = 'release'
    else:
        directory = 'iter_{:07d}'.format(iteration)
90
91
    # Use both the tensor and pipeline MP rank.
    if mpu.get_pipeline_model_parallel_world_size() == 1:
92
93
        return os.path.join(checkpoints_path, directory,
                            'mp_rank_{:02d}'.format(
94
                                mpu.get_tensor_model_parallel_rank()),
95
                            'model_optim_rng.pt')
96
    return os.path.join(checkpoints_path, directory,
97
                        'mp_rank_{:02d}_{:03d}'.format(
98
99
                            mpu.get_tensor_model_parallel_rank(),
                            mpu.get_pipeline_model_parallel_rank()),
100
101
102
103
104
105
106
107
108
                        'model_optim_rng.pt')


def get_checkpoint_tracker_filename(checkpoints_path):
    """Tracker file rescords the latest chckpoint during
    training to restart from."""
    return os.path.join(checkpoints_path, 'latest_checkpointed_iteration.txt')


109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
def read_metadata(tracker_filename):
    # Read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
    iteration = 0
    release = False
    with open(tracker_filename, 'r') as f:
        metastring = f.read().strip()
        try:
            iteration = int(metastring)
        except ValueError:
            release = metastring == 'release'
            if not release:
                print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(
                    tracker_filename))
                sys.exit()
    assert iteration > 0 or release, 'error parsing metadata file {}'.format(
        tracker_filename)

127
128
129
130
    # Get the max iteration retrieved across the ranks.
    iters_cuda = torch.cuda.LongTensor([iteration])
    torch.distributed.all_reduce(iters_cuda, op=torch.distributed.ReduceOp.MAX)
    max_iter = iters_cuda[0].item()
131
132
133
134

    # We should now have all the same iteration.
    # If not, print a warning and chose the maximum
    # iteration across all ranks.
135
136
137
138
139
    if iteration != max_iter:
        print('WARNING: on rank {} found iteration {} in the '
              'metadata while max iteration across the ranks '
              'is {}, replacing it with max iteration.'.format(
                  rank, iteration, max_iter), flush=True)
140
141
142
    return max_iter, release


143
144
145
146
147
def save_checkpoint(iteration, model, optimizer, lr_scheduler):
    """Save a model checkpoint."""
    args = get_args()

    # Only rank zero of the data parallel writes to the disk.
148
    model = utils.unwrap_model(model)
149

Jared Casper's avatar
Jared Casper committed
150
151
    print_rank_0('saving checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))
152

Jared Casper's avatar
Jared Casper committed
153
    if not torch.distributed.is_initialized() or mpu.get_data_parallel_rank() == 0:
154
155
156
157

        # Arguments, iteration, and model.
        state_dict = {}
        state_dict['args'] = args
158
        state_dict['checkpoint_version'] = 3.0
159
        state_dict['iteration'] = iteration
160
161
162
163
164
165
        if len(model) == 1:
            state_dict['model'] = model[0].state_dict_for_save_checkpoint()
        else:
            for i in range(len(model)):
                mpu.set_virtual_pipeline_model_parallel_rank(i)
                state_dict['model%d' % i] = model[i].state_dict_for_save_checkpoint()
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

        # Optimizer stuff.
        if not args.no_save_optim:
            if optimizer is not None:
                state_dict['optimizer'] = optimizer.state_dict()
            if lr_scheduler is not None:
                state_dict['lr_scheduler'] = lr_scheduler.state_dict()

        # RNG states.
        if not args.no_save_rng:
            state_dict['random_rng_state'] = random.getstate()
            state_dict['np_rng_state'] = np.random.get_state()
            state_dict['torch_rng_state'] = torch.get_rng_state()
            state_dict['cuda_rng_state'] = torch.cuda.get_rng_state()
            state_dict['rng_tracker_states'] \
                = mpu.get_cuda_rng_tracker().get_states()

        # Save.
        checkpoint_name = get_checkpoint_name(args.save, iteration)
        ensure_directory_exists(checkpoint_name)
        torch.save(state_dict, checkpoint_name)

    # Wait so everyone is done (necessary)
Jared Casper's avatar
Jared Casper committed
189
190
191
192
193
194
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0('  successfully saved checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))

195
    # And update the latest iteration
Jared Casper's avatar
Jared Casper committed
196
    if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
197
198
199
200
201
        tracker_filename = get_checkpoint_tracker_filename(args.save)
        with open(tracker_filename, 'w') as f:
            f.write(str(iteration))

    # Wait so everyone is done (not necessary)
Jared Casper's avatar
Jared Casper committed
202
203
    if torch.distributed.is_initialized():
        torch.distributed.barrier()
204

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
def _transpose_first_dim(t, num_splits, num_splits_first, model):
    input_shape = t.size()
    # We use a self_attention module but the values extracted aren't
    # specific to self attention so should work for cross attention as well
    while hasattr(model, 'module'):
        model = model.module
    attention_module = model.language_model.encoder.layers[0].self_attention
    hidden_size_per_attention_head = attention_module.hidden_size_per_attention_head
    num_attention_heads_per_partition = attention_module.num_attention_heads_per_partition
    if num_splits_first:
        """[num_splits * np * hn, h]
        -->(view) [num_splits, np, hn, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_splits, num_attention_heads_per_partition,
             hidden_size_per_attention_head) + input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(0, 1).contiguous()
    else:
        """[np * hn * num_splits, h]
        -->(view) [np, hn, num_splits, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_attention_heads_per_partition,
             hidden_size_per_attention_head, num_splits) +\
             input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(1, 2).contiguous()
    t = t.view(*input_shape)

    return t
242

Mostofa Patwary's avatar
Mostofa Patwary committed
243
244
245
246
247
def fix_query_key_value_ordering(model, checkpoint_version):
    """Fix up query/key/value matrix ordering if checkpoint
    version is smaller than 2.0
    """
    if checkpoint_version < 2.0:
248
249
250
        if isinstance(model, list):
            assert len(model)==1
            model = model[0]
Mostofa Patwary's avatar
Mostofa Patwary committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        for name, param in model.named_parameters():
            if name.endswith(('.query_key_value.weight', '.query_key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 3, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 3, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
            if name.endswith(('.key_value.weight', '.key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 2, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 2, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
        print_rank_0(" succesfully fixed query-key-values ordering for"
                    " checkpoint version {}".format(checkpoint_version))

273
def load_checkpoint(model, optimizer, lr_scheduler, load_arg='load', strict=True):
274
275
276
277
278
    """Load a model checkpoint and return the iteration.
    strict (bool): whether to strictly enforce that the keys in
        :attr:`state_dict` of the checkpoint match the names of
        parameters and buffers in model.
    """
279
    args = get_args()
280
    load_dir = getattr(args, load_arg)
281

282
    model = utils.unwrap_model(model)
283

284
    # Read the tracker file and set the iteration.
285
    tracker_filename = get_checkpoint_tracker_filename(load_dir)
286
287
288
289
290
291
292
293
294
295
296

    # If no tracker file, return iretation zero.
    if not os.path.isfile(tracker_filename):
        print_rank_0('WARNING: could not find the metadata file {} '.format(
            tracker_filename))
        print_rank_0('    will not load any checkpoints and will start from '
                     'random')
        return 0

    # Otherwise, read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
297
    iteration, release = read_metadata(tracker_filename)
298
299

    # Checkpoint.
300
    checkpoint_name = get_checkpoint_name(load_dir, iteration, release)
Jared Casper's avatar
Jared Casper committed
301
    print_rank_0(f' loading checkpoint from {args.load} at iteration {iteration}')
302
303
304
305
306

    # Load the checkpoint.
    try:
        state_dict = torch.load(checkpoint_name, map_location='cpu')
    except ModuleNotFoundError:
mohammad's avatar
mohammad committed
307
        from megatron.fp16_deprecated import loss_scaler
308
309
310
        # For backward compatibility.
        print_rank_0(' > deserializing using the old code structure ...')
        sys.modules['fp16.loss_scaler'] = sys.modules[
mohammad's avatar
mohammad committed
311
312
313
            'megatron.fp16_deprecated.loss_scaler']
        sys.modules['megatron.fp16.loss_scaler'] = sys.modules[
            'megatron.fp16_deprecated.loss_scaler']
314
315
        state_dict = torch.load(checkpoint_name, map_location='cpu')
        sys.modules.pop('fp16.loss_scaler', None)
mohammad's avatar
mohammad committed
316
        sys.modules.pop('megatron.fp16.loss_scaler', None)
317
    except BaseException as e:
318
        print_rank_0('could not load the checkpoint')
319
        print_rank_0(e)
320
321
        sys.exit()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
322
323
324
    # set checkpoint version
    set_checkpoint_version(state_dict.get('checkpoint_version', 0))

325
326
327
328
329
330
331
    # Set iteration.
    if args.finetune or release:
        iteration = 0
    else:
        try:
            iteration = state_dict['iteration']
        except KeyError:
Neel Kant's avatar
Neel Kant committed
332
            try:  # Backward compatible with older checkpoints
333
334
335
336
337
338
339
340
                iteration = state_dict['total_iters']
            except KeyError:
                print_rank_0('A metadata file exists but unable to load '
                             'iteration from checkpoint {}, exiting'.format(
                                 checkpoint_name))
                sys.exit()

    # Check arguments.
mohammad's avatar
mohammad committed
341
342
    assert args.consumed_train_samples == 0
    assert args.consumed_valid_samples == 0
343
344
345
    if 'args' in state_dict:
        checkpoint_args = state_dict['args']
        check_checkpoint_args(checkpoint_args)
346
347
        args.consumed_train_samples = getattr(checkpoint_args,
                                              'consumed_train_samples', 0)
mohammad's avatar
mohammad committed
348
        update_num_microbatches(consumed_samples=args.consumed_train_samples)
349
350
        args.consumed_valid_samples = getattr(checkpoint_args,
                                              'consumed_valid_samples', 0)
351
352
353
354
    else:
        print_rank_0('could not find arguments in the checkpoint ...')

    # Model.
355
356
357
358
359
360
    if len(model) == 1:
        model[0].load_state_dict(state_dict['model'], strict=strict)
    else:
        for i in range(len(model)):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
            model[i].load_state_dict(state_dict['model%d' % i], strict=strict)
361

Mostofa Patwary's avatar
Mostofa Patwary committed
362
363
364
365
    # Fix up query/key/value matrix ordering if needed
    checkpoint_version = get_checkpoint_version()
    print_rank_0(f' checkpoint version {checkpoint_version}')
    fix_query_key_value_ordering(model, checkpoint_version)
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

    # Optimizer.
    if not release and not args.finetune and not args.no_load_optim:
        try:
            if optimizer is not None:
                optimizer.load_state_dict(state_dict['optimizer'])
            if lr_scheduler is not None:
                lr_scheduler.load_state_dict(state_dict['lr_scheduler'])
        except KeyError:
            print_rank_0('Unable to load optimizer from checkpoint {}. '
                         'Specify --no-load-optim or --finetune to prevent '
                         'attempting to load the optimizer state, '
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

    # rng states.
    if not release and not args.finetune and not args.no_load_rng:
        try:
            random.setstate(state_dict['random_rng_state'])
            np.random.set_state(state_dict['np_rng_state'])
            torch.set_rng_state(state_dict['torch_rng_state'])
            torch.cuda.set_rng_state(state_dict['cuda_rng_state'])
388
389
390
            # Check for empty states array
            if not state_dict['rng_tracker_states']:
                raise KeyError
391
392
393
            mpu.get_cuda_rng_tracker().set_states(
                state_dict['rng_tracker_states'])
        except KeyError:
394
            print_rank_0('Unable to load rng state from checkpoint {}. '
395
                         'Specify --no-load-rng or --finetune to prevent '
396
                         'attempting to load the rng state, '
397
398
399
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

Jared Casper's avatar
Jared Casper committed
400
401
402
403
404
405
    # Some utilities want to load a checkpoint without distributed being initialized
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0(f'  successfully loaded checkpoint from {args.load} '
                 f'at iteration {iteration}')
406
407

    return iteration
Neel Kant's avatar
Neel Kant committed
408
409


410
411
412
413
414
415
def load_biencoder_checkpoint(model, only_query_model=False,
        only_context_model=False, custom_load_path=None):
    """
    selectively load retrieval models for indexing/retrieving 
    from saved checkpoints
    """
Neel Kant's avatar
Neel Kant committed
416
417
418

    args = get_args()

419
    model = utils.unwrap_model(model)
Neel Kant's avatar
Neel Kant committed
420

421
    load_path = custom_load_path if custom_load_path is not None else args.load
Neel Kant's avatar
Neel Kant committed
422
423
424
425
426
427
428
429
430
431
432

    tracker_filename = get_checkpoint_tracker_filename(load_path)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    checkpoint_name = get_checkpoint_name(load_path, iteration, False)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
433
    ret_state_dict = state_dict['model']
Neel Kant's avatar
Neel Kant committed
434
435

    if only_query_model:
436
        ret_state_dict.pop('context_model')
Mostofa Patwary's avatar
Mostofa Patwary committed
437
    if only_context_model:
438
        ret_state_dict.pop('query_model')
Neel Kant's avatar
Neel Kant committed
439

440
441
    assert len(model) == 1
    model[0].load_state_dict(ret_state_dict)
Neel Kant's avatar
Neel Kant committed
442
443
444
445
446
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

Neel Kant's avatar
Neel Kant committed
447
    return model
448