transformer.py 35.7 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""
import math
import torch
19
import torch.nn.functional as F
20

Mohammad's avatar
Mohammad committed
21
from megatron import get_args
22
from megatron import mpu
23
from .module import MegatronModule
24
from megatron.model.enums import AttnMaskType, ModelType, LayerType, AttnType
25
from megatron.model import LayerNorm
26
27
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
28
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
29
30
31
32
33
34
35
36
37
38
39

""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
40
    Transformer takes input of size [s, b, h] and returns a
41
42
43
44
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

45
46
47
48
49
50

class DropPath(MegatronModule):
    """Drop paths (Stochastic Depth) per sample 
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
51
    def __init__(self, drop_prob=0.):
52
53
54
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
55
    def forward(self, hidden_state):
56
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
57
            return hidden_state
58
59
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
Vijay Korthikanti's avatar
Vijay Korthikanti committed
60
        shape = (hidden_state.shape[0],) + (1,) * (hidden_state.ndim - 1)
61
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
62
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
63
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
64
        output = hidden_state.div(keep_prob) * random_tensor
65
66
67
        return output


68
69
70
71
72
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
73
    state back into h hidden dimension.
74
75
    """

76
    def __init__(self, init_method, output_layer_init_method):
77
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
78
        args = get_args()
79
80
81

        # Project to 4h.
        self.dense_h_to_4h = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
82
            args.hidden_size,
83
            args.ffn_hidden_size,
84
            gather_output=False,
85
86
            init_method=init_method,
            skip_bias_add=True)
87

88
89
90
91
92
93
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
94
95
96

        # Project back to h.
        self.dense_4h_to_h = mpu.RowParallelLinear(
97
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
98
            args.hidden_size,
99
            input_is_parallel=True,
100
101
            init_method=output_layer_init_method,
            skip_bias_add=True)
102

103
104
    def forward(self, hidden_states):

105
106
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
107

108
109
110
111
112
113
114
115
116
117
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
118

rprenger's avatar
rprenger committed
119
120
121
122
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
rprenger's avatar
rprenger committed
123
    def __init__(self, init_method, output_layer_init_method):
rprenger's avatar
rprenger committed
124
125
        super(SwitchMLP, self).__init__()
        args = get_args()
rprenger's avatar
rprenger committed
126
        self.router = torch.nn.Linear(args.hidden_size, args.num_experts)
rprenger's avatar
rprenger committed
127
        self.experts = torch.nn.ModuleList()
rprenger's avatar
rprenger committed
128
        for i in range(args.num_experts):
rprenger's avatar
rprenger committed
129
            self.experts.append(ParallelMLP(init_method, output_layer_init_method))
130

rprenger's avatar
rprenger committed
131
132
133
134
135
136
    def forward(self, hidden_states):
        # hidden_states: [b, s, h]
        b = hidden_states.size(0)
        s = hidden_states.size(1)
        h = hidden_states.size(2)
        route = self.router(hidden_states)
rprenger's avatar
rprenger committed
137
        route = torch.nn.functional.softmax(route, dim=2)
rprenger's avatar
rprenger committed
138
        max_prob, max_ind = torch.max(route, dim=2)
139
140
        max_prob = torch.unsqueeze(max_prob, 2) # [b s 1]

rprenger's avatar
rprenger committed
141
142
        # TODO (rprenger) TODO this could be made easier to read
        # Converting [b, s, h] to [b*s, h].
143
144
145
146
        # Each vector could be routed differently
        hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [b*s h]
        max_prob = max_prob.view(-1, max_prob.size(2)) # [b*s 1]
        max_ind = max_ind.view(-1) # [b*s]
rprenger's avatar
rprenger committed
147
148
149

        output_total = torch.empty_like(hidden_states)
        output_bias_total = torch.empty_like(hidden_states)
rprenger's avatar
rprenger committed
150
        #TODO (rprenger) This does each expert in serial, but it could be parallelized
151
        
rprenger's avatar
rprenger committed
152
        for expert_num, expert in enumerate(self.experts):
153
154
            local_indices = (max_ind == expert_num).nonzero()
            hidden = hidden_states[local_indices,:]
rprenger's avatar
rprenger committed
155
156
            output, output_bias = expert(hidden)
            output_bias = output_bias.expand_as(output)
157
158
159
            output_total[local_indices,:] = output
            output_bias_total[local_indices,:] = output_bias

rprenger's avatar
rprenger committed
160
161
        output_total = output_total*max_prob
        output_bias_total = output_bias_total*max_prob
162
163
        output_total = output_total.view(b, s, h)
        output_bias_total = output_bias_total.view(b, s, h)
rprenger's avatar
rprenger committed
164
165
166

        return output_total, output_bias_total

167
class ParallelAttention(MegatronModule):
168
169
170
171
172
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [b, s, h]
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
173

174
    def __init__(self, init_method,
175
176
177
178
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
179
        args = get_args()
Mohammad's avatar
Mohammad committed
180
        self.fp16 = args.fp16
181
        self.bf16 = args.bf16
182

Mohammad's avatar
Mohammad committed
183
184
        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
185
186
187
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
188
189
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
190
        self.params_dtype = args.params_dtype
191
192

        projection_size = args.kv_channels * args.num_attention_heads
193
194

        # Per attention head and per partition values.
195
        world_size = mpu.get_tensor_model_parallel_world_size()
196
        self.hidden_size_per_partition = mpu.divide(projection_size,
Mohammad's avatar
Mohammad committed
197
                                                    world_size)
198
        self.hidden_size_per_attention_head = mpu.divide(
199
            projection_size, args.num_attention_heads)
200
        self.num_attention_heads_per_partition = mpu.divide(
Mohammad's avatar
Mohammad committed
201
            args.num_attention_heads, world_size)
202
203

        # Strided linear layer.
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
        if attention_type == AttnType.self_attn:
            self.query_key_value = mpu.ColumnParallelLinear(
                args.hidden_size,
                3 * projection_size,
                gather_output=False,
                init_method=init_method)
        else:
            assert attention_type == AttnType.cross_attn
            self.query = mpu.ColumnParallelLinear(
                args.hidden_size,
                projection_size,
                gather_output=False,
                init_method=init_method)

            self.key_value = mpu.ColumnParallelLinear(
                args.hidden_size,
                2 * projection_size,
                gather_output=False,
                init_method=init_method)
223

224
225
226
227
228
229
230
        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
231
            self.fp16, self.bf16,
232
233
            self.attn_mask_type,
            args.masked_softmax_fusion,
234
            attention_mask_func,
235
236
237
            self.attention_softmax_in_fp32,
            coeff)

238
239
240
        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
Mohammad's avatar
Mohammad committed
241
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
242
243
244

        # Output.
        self.dense = mpu.RowParallelLinear(
245
            projection_size,
Mohammad's avatar
Mohammad committed
246
            args.hidden_size,
247
            input_is_parallel=True,
248
249
            init_method=output_layer_init_method,
            skip_bias_add=True)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
250

251
252
253
254
255
256
257
258
259
260
261
262

    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())
        

    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
263
                encoder_output=None, inference_params=None):
264
        # hidden_states: [sq, b, h]
265

266
267
268
269

        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
mshoeybi's avatar
mshoeybi committed
270
        if inference_params:
271
            if self.layer_number not in inference_params.key_value_memory_dict:
mshoeybi's avatar
mshoeybi committed
272
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
273
                inf_max_batch_size = inference_params.max_batch_size
274
                inference_key_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
275
                    inf_max_seq_len, inf_max_batch_size)
276
                inference_value_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
277
                    inf_max_seq_len, inf_max_batch_size)
278
279
280
281
282
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
283

284

285
286
287
        # =====================
        # Query, Key, and Value
        # =====================
288

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
             value_layer) = mpu.split_tensor_along_last_dim(mixed_x_layer, 3)
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
             value_layer) = mpu.split_tensor_along_last_dim(mixed_kv_layer, 2)

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
324
325


mshoeybi's avatar
mshoeybi committed
326
327
328
        # ==================================
        # Adjust key and value for inference
        # ==================================
329

mshoeybi's avatar
mshoeybi committed
330
        if inference_params:
mshoeybi's avatar
mshoeybi committed
331
332
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
333
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
334
335
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
336
            assert sequence_end <= inference_key_memory.size(0)
337
            # Copy key and values.
338
339
340
341
342
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
343
                :sequence_end, batch_start:batch_end, ...]
344
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
345
                :sequence_end, batch_start:batch_end, ...]
346

347

348
349
350
        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================
351

352
        # [b, np, sq, sk]
353
354
355
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
356
                       key_layer.size(0))
357

358
        # [sq, b, np, hn] -> [sq, b * np, hn]
359
360
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
361
        # [sk, b, np, hn] -> [sk, b * np, hn]
362
363
364
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

365
        # preallocting result tensor: [b * np, sq, sk]
366
        matmul_result = torch.empty(
367
368
            output_size[0]*output_size[1],
            output_size[2],
369
            output_size[3],
370
            dtype=query_layer.dtype,
371
372
            device=torch.cuda.current_device())

373
        # Raw attention scores. [b * np, sq, sk]
374
375
        matmul_result = torch.baddbmm(
            matmul_result,
376
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
377
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
378
379
            beta=0.0, alpha=(1.0/self.norm_factor))

380
        # change view to [b, np, sq, sk]
381
382
        attention_scores = matmul_result.view(*output_size)

383

384
385
386
        # ===========================
        # Attention probs and dropout
        # ===========================
387

388
        # attention scores and attention mask [b, np, sq, sk]
389
390
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)
391

392
393
394
395
396
397
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        with mpu.get_cuda_rng_tracker().fork():
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
398
        # Context layer. [sq, b, hp]
399
400
        # =========================

401
402
        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]
403

404
        # context layer shape: [b, np, sq, hn]
405
406
407
408
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))
409

410
        # change view [sk, b * np, hn]
411
        value_layer = value_layer.view(value_layer.size(0),
412
                                       output_size[0] * output_size[1], -1)
413

414
        # change view [b * np, sq, sk]
415
416
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)
417

418
        # matmul: [b * np, sq, hn]
419
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
420

421
        # change view [b, np, sq, hn]
422
423
        context_layer = context_layer.view(*output_size)

424
        # [b, np, sq, hn] --> [sq, b, np, hn]
425
426
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

427
        # [sq, b, np, hn] --> [sq, b, hp]
428
429
430
431
432
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        # =================
433
        # Output. [sq, b, h]
434
435
436
        # =================

        output, bias = self.dense(context_layer)
437

438
439
440
        return output, bias


441
def bias_dropout_add(x, bias, residual, prob, training):
442
443
444
445
446
447
448
449
450
451
452
453
454
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
455
456
457
458
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: torch.Tensor,
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
459
460
461
462
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
463
464
465
466
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: torch.Tensor,
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
467
    return bias_dropout_add(x, bias, residual, prob, False)
468
469
470
471
472


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

473
    Transformer layer takes input with size [b, s, h] and returns an
474
475
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
476

477
478
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
479
480
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
481
        args = get_args()
482
483

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
484
        self.layer_number = layer_number
485
        self.layer_type = layer_type
486
487

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
488
            = args.apply_residual_connection_post_layernorm
489

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
490
491
492
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

493
494
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
495
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
496
497
            eps=args.layernorm_epsilon,
            no_persist_layer_norm=args.no_persist_layer_norm)
498
499

        # Self attention.
500
501
502
503
504
505
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
506
507
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
508
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
509

510
        # Layernorm on the attention output
511
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
512
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
513
514
            eps=args.layernorm_epsilon,
            no_persist_layer_norm=args.no_persist_layer_norm)
515

516
517
518
519
520
521
522
523
524
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
525
526
                eps=args.layernorm_epsilon,
                no_persist_layer_norm=args.no_persist_layer_norm)
527

528
        # MLP
rprenger's avatar
rprenger committed
529
530
531
532
        if args.num_experts is not None:
            self.mlp = SwitchMLP(init_method, output_layer_init_method)
        else:
            self.mlp = ParallelMLP(init_method, output_layer_init_method)
533

534
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
535
536
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
537
538
        # hidden_states: [b, s, h]

539
        # Layer norm at the beginning of the transformer layer.
540
541
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
542
        attention_output, attention_bias = \
543
544
545
            self.self_attention(
                layernorm_output,
                attention_mask,
mshoeybi's avatar
mshoeybi committed
546
                inference_params=inference_params)
547

548
549
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
550
551
552
553
            residual = layernorm_output
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
554
        if self.drop_path is None:
555
556
557
558
559
560
561
562
563
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
564
            else:
565
                bias_dropout_add_func = get_bias_dropout_add(self.training)
566

567
568
569
570
571
572
573
574
575
576
577
578
            # re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            layernorm_input = residual + self.drop_path(out)
579

580
581
582
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

            # re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

605
        # MLP.
606
        mlp_output, mlp_bias = self.mlp(layernorm_output)
607

608
609
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
610
            residual = layernorm_output
611
        else:
612
613
            residual = layernorm_input

Vijay Korthikanti's avatar
Vijay Korthikanti committed
614
        if self.drop_path is None:
615
616
617
618
619
620
621
622
623
624
625
626
            # re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
                output = bias_dropout_add_func(
                    mlp_output,
                    mlp_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(mlp_output + mlp_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
627
628
629
630

        return output


631
632
633
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
634
    The sole purpose of this layer is for when a standalone embedding layer
635
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
636
637
638
639
640
641
642
643
644
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
645
646
647
648
649
650
651
652
653
654
655
656
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


657
658
659
class ParallelTransformer(MegatronModule):
    """Transformer class."""

660
    def __init__(self, init_method, output_layer_init_method,
661
                 layer_type=LayerType.encoder,
662
                 self_attn_mask_type=AttnMaskType.padding,
663
                 post_layer_norm=True, 
664
665
                 pre_process=True, post_process=True,
                 drop_path_rate=0.0):
666
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
667
        args = get_args()
668

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
669
        self.bf16 = args.bf16
670
        self.fp32_residual_connection = args.fp32_residual_connection
671
        self.post_layer_norm = post_layer_norm
672
673
674
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
675
        self.drop_path_rate = drop_path_rate
676

677
        # Store activation checkpoiting flag.
678
679
        self.activations_checkpoint_method = args.activations_checkpoint_method
        self.activations_checkpoint_num_layers = args.activations_checkpoint_num_layers
mshoeybi's avatar
mshoeybi committed
680
        self.distribute_checkpointed_activations = args.distribute_checkpointed_activations
681

682
        # Number of layers.
683
684
        self.num_layers = mpu.get_num_layers(
            args, args.model_type == ModelType.encoder_and_decoder)
Mohammad's avatar
Mohammad committed
685

Vijay Korthikanti's avatar
Vijay Korthikanti committed
686
        self.drop_path_rates = [rate.item() for rate in torch.linspace(0, self.drop_path_rate, args.num_layers)]
687

Mohammad's avatar
Mohammad committed
688
689
        # Transformer layers.
        def build_layer(layer_number):
690
            return ParallelTransformerLayer(
691
692
693
                init_method,
                output_layer_init_method,
                layer_number,
694
                layer_type=layer_type,
695
                self_attn_mask_type=self_attn_mask_type,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
696
                drop_path_rate=self.drop_path_rates[layer_number - 1])
697
698
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
699
700
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
701
            assert args.model_type != ModelType.encoder_and_decoder
702
703
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
704
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
705
706
707
708
709
710
711
712
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
713
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
714
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
715
716
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
        else:
717
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
718
719
            if args.model_type == ModelType.encoder_and_decoder and \
                    mpu.get_pipeline_model_parallel_world_size() > 1:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
720
721
722
723
724
725
726
727
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
728

729
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
730
            # When a standalone embedding stage is used (e.g.,
731
            # args.standalone_embedding_stage == True), virtual pipeline ranks
732
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
733
734
735
736
737
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
738
739
740
741
742
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
743

744
        if self.post_process and self.post_layer_norm:
745
746
747
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
748
749
                eps=args.layernorm_epsilon,
                no_persist_layer_norm=args.no_persist_layer_norm)
750

Mohammad's avatar
Mohammad committed
751
    def _get_layer(self, layer_number):
752
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
753

754
755
    def _checkpointed_forward(self, hidden_states, attention_mask,
                              encoder_output, enc_dec_attn_mask):
756
757
758
759
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                x_ = inputs[0]
760
761
762
                attention_mask = inputs[1]
                encoder_output = inputs[2]
                enc_dec_attn_mask = inputs[3]
Mohammad's avatar
Mohammad committed
763
764
                for index in range(start, end):
                    layer = self._get_layer(index)
765
                    x_ = layer(x_, attention_mask, encoder_output, enc_dec_attn_mask)
766
767
768
                return x_
            return custom_forward

769
770
771
772
773
774
775
776
        if self.activations_checkpoint_method == 'uniform':
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
                hidden_states = mpu.checkpoint(
                    custom(l, l + self.activations_checkpoint_num_layers),
777
                    self.distribute_checkpointed_activations,
778
779
780
781
782
783
784
785
786
787
                    hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                l += self.activations_checkpoint_num_layers
        elif self.activations_checkpoint_method == 'block':
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
                if l < self.activations_checkpoint_num_layers:
                    hidden_states = mpu.checkpoint(
                        custom(l, l + 1),
788
                        self.distribute_checkpointed_activations,
789
790
791
792
793
794
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                else:
                    hidden_states = custom(l, l + 1)(
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
        else:
            raise ValueError("Invalid activation checkpoint method.")
795
796
797

        return hidden_states

798
    def set_input_tensor(self, input_tensor):
799
800
801
802
803
804
805
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
806
807
        self.input_tensor = input_tensor

808
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
809
810
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
811

812
        # Checks.
mshoeybi's avatar
mshoeybi committed
813
        if inference_params:
814
            assert self.activations_checkpoint_method is None, \
815
                'inference does not work with activation checkpointing'
816

817
        if self.pre_process:
818
            # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
mshoeybi's avatar
mshoeybi committed
819
            # If the input flag for fp32 residual connection is set, convert for float.
820
821
            if self.fp32_residual_connection:
                hidden_states = hidden_states.transpose(0, 1).contiguous().float()
mshoeybi's avatar
mshoeybi committed
822
            # Otherwise, leave it as is.
823
824
            else:
                hidden_states = hidden_states.transpose(0, 1).contiguous()
825
        else:
826
            # See set_input_tensor()
827
            hidden_states = self.input_tensor
828

829
830
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
831
832
833
834
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
        # 
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
        hidden_states = mpu.make_viewless_tensor(
            hidden_states,
            requires_grad = True,
            keep_graph = True,
        )

        # Transpose encoder output.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
851
        if encoder_output is not None:
852
            encoder_output = encoder_output.transpose(0, 1).contiguous()
853

854
        # Forward pass.
855
        if self.activations_checkpoint_method is not None:
856
            hidden_states = self._checkpointed_forward(hidden_states,
857
858
859
                                                       attention_mask,
                                                       encoder_output,
                                                       enc_dec_attn_mask)
860
        else:
Mohammad's avatar
Mohammad committed
861
862
            for index in range(self.num_layers):
                layer = self._get_layer(index)
863
864
865
866
867
                hidden_states = layer(
                    hidden_states,
                    attention_mask,
                    encoder_output=encoder_output,
                    enc_dec_attn_mask=enc_dec_attn_mask,
mshoeybi's avatar
mshoeybi committed
868
869
                    inference_params=inference_params)

870

871
        # Final layer norm.
872
        if self.post_process:
873
874
            # Reverting data format change [s b h] --> [b s h].
            hidden_states = hidden_states.transpose(0, 1).contiguous()
875
            output = self.final_layernorm(hidden_states) if self.post_layer_norm else hidden_states
876
877
        else:
            output = hidden_states
878

879
        return output