checkpointing.py 21 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Input/output checkpointing."""

import os
import random
import sys
import numpy as np

import torch

25
26
27
from megatron import (get_args,
                      mpu,
                      print_rank_0,
28
29
                      update_num_microbatches,
                      utils)
30

Vijay Korthikanti's avatar
Vijay Korthikanti committed
31
32
33
34
_CHECKPOINT_VERSION = None

def set_checkpoint_version(value):
    global _CHECKPOINT_VERSION
Jared Casper's avatar
Jared Casper committed
35
36
37
    if _CHECKPOINT_VERSION is not None:
        assert _CHECKPOINT_VERSION == value, \
            "checkpoint versions do not match"
Vijay Korthikanti's avatar
Vijay Korthikanti committed
38
39
40
41
42
    _CHECKPOINT_VERSION = value

def get_checkpoint_version():
    global _CHECKPOINT_VERSION
    return _CHECKPOINT_VERSION
43
44
45

def check_checkpoint_args(checkpoint_args):
    """Ensure fixed arguments for a model are the same for the input
46
    arguments and the one retrieved from checkpoint."""
47
48
    args = get_args()

49
50
51
52
53
    def _compare(arg_name, old_arg_name=None):
        if old_arg_name is not None:
            checkpoint_value = getattr(checkpoint_args, old_arg_name)
        else:
            checkpoint_value = getattr(checkpoint_args, arg_name)
54
55
56
57
58
59
60
61
62
        args_value = getattr(args, arg_name)
        error_message = '{} value from checkpoint ({}) is not equal to the ' \
                        'input argument value ({}).'.format(
                            arg_name, checkpoint_value, args_value)
        assert checkpoint_value == args_value, error_message

    _compare('num_layers')
    _compare('hidden_size')
    _compare('num_attention_heads')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
63
    if args.vocab_file:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
64
        _compare('max_position_embeddings')
65
66
67
        _compare('make_vocab_size_divisible_by')
        _compare('padded_vocab_size')
        _compare('tokenizer_type')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
68
69
    if args.data_parallel_random_init:
        _compare('data_parallel_random_init')
70
71
72
73
74
75
    if get_checkpoint_version() < 3.0:
        _compare('tensor_model_parallel_size',
                 old_arg_name='model_parallel_size')
    if get_checkpoint_version() >= 3.0:
        _compare('tensor_model_parallel_size')
        _compare('pipeline_model_parallel_size')
76
77
78
79
80
81
82
83

def ensure_directory_exists(filename):
    """Build filename's path if it does not already exists."""
    dirname = os.path.dirname(filename)
    if not os.path.exists(dirname):
        os.makedirs(dirname)


84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# >>
# def get_checkpoint_name(checkpoints_path, iteration,
#                         release=False):
#     """A unified checkpoint name."""
#     if release:
#         directory = 'release'
#     else:
#         directory = 'iter_{:07d}'.format(iteration)
#     # Use both the tensor and pipeline MP rank.
#     if mpu.get_pipeline_model_parallel_world_size() == 1:
#         return os.path.join(checkpoints_path, directory,
#                             'mp_rank_{:02d}'.format(
#                                 mpu.get_tensor_model_parallel_rank()),
#                             'model_optim_rng.pt')
#     return os.path.join(checkpoints_path, directory,
#                         'mp_rank_{:02d}_{:03d}'.format(
#                             mpu.get_tensor_model_parallel_rank(),
#                             mpu.get_pipeline_model_parallel_rank()),
#                         'model_optim_rng.pt')
def get_checkpoint_names(checkpoints_path, iteration,
104
                        release=False):
105
106
107
108
109
    """A unified checkpoint name."""
    if release:
        directory = 'release'
    else:
        directory = 'iter_{:07d}'.format(iteration)
110
    # Use both the tensor and pipeline MP rank.
111
112
113
114
115
116
117
118
119
120
121
    common_path = os.path.join(
        checkpoints_path,
        directory,
        "mp_rank_%02d_%03d_%03d" % (
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
            mpu.get_data_parallel_rank()))
    model_name = os.path.join(common_path, "model_rng.pt")
    optim_name = os.path.join(common_path, "optim.pt")
    return model_name, optim_name
# <<<
122
123
124
125
126
127
128
129


def get_checkpoint_tracker_filename(checkpoints_path):
    """Tracker file rescords the latest chckpoint during
    training to restart from."""
    return os.path.join(checkpoints_path, 'latest_checkpointed_iteration.txt')


130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def read_metadata(tracker_filename):
    # Read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
    iteration = 0
    release = False
    with open(tracker_filename, 'r') as f:
        metastring = f.read().strip()
        try:
            iteration = int(metastring)
        except ValueError:
            release = metastring == 'release'
            if not release:
                print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(
                    tracker_filename))
                sys.exit()
    assert iteration > 0 or release, 'error parsing metadata file {}'.format(
        tracker_filename)

148
149
150
151
    # Get the max iteration retrieved across the ranks.
    iters_cuda = torch.cuda.LongTensor([iteration])
    torch.distributed.all_reduce(iters_cuda, op=torch.distributed.ReduceOp.MAX)
    max_iter = iters_cuda[0].item()
152
153
154
155

    # We should now have all the same iteration.
    # If not, print a warning and chose the maximum
    # iteration across all ranks.
156
157
158
159
160
    if iteration != max_iter:
        print('WARNING: on rank {} found iteration {} in the '
              'metadata while max iteration across the ranks '
              'is {}, replacing it with max iteration.'.format(
                  rank, iteration, max_iter), flush=True)
161
162
163
    return max_iter, release


164
165
def get_rng_state():
    """ collect rng state across data parallel ranks """
166
    args = get_args()
167
168
169
170
171
172
173
174
175
    rng_state = {
        'random_rng_state': random.getstate(),
        'np_rng_state': np.random.get_state(),
        'torch_rng_state': torch.get_rng_state(),
        'cuda_rng_state': torch.cuda.get_rng_state(),
        'rng_tracker_states': mpu.get_cuda_rng_tracker().get_states()}

    rng_state_list = None
    if torch.distributed.is_initialized() and \
176
177
            mpu.get_data_parallel_world_size() > 1 and \
            args.data_parallel_random_init:
178
179
180
        rng_state_list = \
            [None for i in range(mpu.get_data_parallel_world_size())]
        torch.distributed.all_gather_object(
181
            rng_state_list,
182
            rng_state,
183
184
185
186
187
188
189
            group=mpu.get_data_parallel_group())
    else:
        rng_state_list = [rng_state]

    return rng_state_list


190
def save_checkpoint(iteration, model, optimizer, opt_param_scheduler):
191
192
193
194
    """Save a model checkpoint."""
    args = get_args()

    # Only rank zero of the data parallel writes to the disk.
195
    model = utils.unwrap_model(model)
196

Jared Casper's avatar
Jared Casper committed
197
198
    print_rank_0('saving checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))
199

200
    # Collect rng state across data parallel ranks.
201
202
    rng_state = get_rng_state()

203
204
205
206
207
208
209
    # Checkpoint file names.
    model_checkpoint_name, optim_checkpoint_name = \
        get_checkpoint_names(args.save, iteration)

    # Save args, model, RNG.
    if not torch.distributed.is_initialized() \
       or mpu.get_data_parallel_rank() == 0:
210
211
212
213

        # Arguments, iteration, and model.
        state_dict = {}
        state_dict['args'] = args
214
        state_dict['checkpoint_version'] = 3.0
215
        state_dict['iteration'] = iteration
216
217
218
219
220
221
        if len(model) == 1:
            state_dict['model'] = model[0].state_dict_for_save_checkpoint()
        else:
            for i in range(len(model)):
                mpu.set_virtual_pipeline_model_parallel_rank(i)
                state_dict['model%d' % i] = model[i].state_dict_for_save_checkpoint()
222

223
224
225
226
227
228
229
230
        # >>>
        # # Optimizer stuff.
        # if not args.no_save_optim:
        #     if optimizer is not None:
        #         state_dict['optimizer'] = optimizer.state_dict()
        #     if opt_param_scheduler is not None:
        #         state_dict['opt_param_scheduler'] = opt_param_scheduler.state_dict()
        # <<<
231
232
233

        # RNG states.
        if not args.no_save_rng:
234
            state_dict["rng_state"] = rng_state
235
236

        # Save.
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        ensure_directory_exists(model_checkpoint_name)
        torch.save(state_dict, model_checkpoint_name)

    # >>>
    # Save optimizer state.
    if not args.no_save_optim \
       and (not torch.distributed.is_initialized()
            or mpu.get_data_parallel_rank() == 0
            or args.use_distributed_optimizer):

        # Optimizer stuff.
        state_dict = {}
        if optimizer is not None:
            state_dict['optimizer'] = optimizer.state_dict()
        if opt_param_scheduler is not None:
            state_dict['opt_param_scheduler'] = opt_param_scheduler.state_dict()

        # Save.
        ensure_directory_exists(optim_checkpoint_name)
        torch.save(state_dict, optim_checkpoint_name)
        # >>>
        # from lutil import pax
        # pax({
        #     "model_checkpoint_name" : model_checkpoint_name,
        #     "optim_checkpoint_name" : optim_checkpoint_name,
        #     "state_dict" : state_dict,
        # })
        # <<<
    # <<<
266
267

    # Wait so everyone is done (necessary)
Jared Casper's avatar
Jared Casper committed
268
269
270
271
272
273
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0('  successfully saved checkpoint at iteration {:7d} to {}'.format(
        iteration, args.save))

274
    # And update the latest iteration
Jared Casper's avatar
Jared Casper committed
275
    if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
276
277
278
279
280
        tracker_filename = get_checkpoint_tracker_filename(args.save)
        with open(tracker_filename, 'w') as f:
            f.write(str(iteration))

    # Wait so everyone is done (not necessary)
Jared Casper's avatar
Jared Casper committed
281
282
    if torch.distributed.is_initialized():
        torch.distributed.barrier()
283

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
def _transpose_first_dim(t, num_splits, num_splits_first, model):
    input_shape = t.size()
    # We use a self_attention module but the values extracted aren't
    # specific to self attention so should work for cross attention as well
    while hasattr(model, 'module'):
        model = model.module
    attention_module = model.language_model.encoder.layers[0].self_attention
    hidden_size_per_attention_head = attention_module.hidden_size_per_attention_head
    num_attention_heads_per_partition = attention_module.num_attention_heads_per_partition
    if num_splits_first:
        """[num_splits * np * hn, h]
        -->(view) [num_splits, np, hn, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_splits, num_attention_heads_per_partition,
             hidden_size_per_attention_head) + input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(0, 1).contiguous()
    else:
        """[np * hn * num_splits, h]
        -->(view) [np, hn, num_splits, h]
        -->(tranpose) [np, num_splits, hn, h]
        -->(view) [np * num_splits * hn, h] """

        intermediate_shape = \
            (num_attention_heads_per_partition,
             hidden_size_per_attention_head, num_splits) +\
             input_shape[1:]

        t = t.view(*intermediate_shape)
        t = t.transpose(1, 2).contiguous()
    t = t.view(*input_shape)

    return t
321

Mostofa Patwary's avatar
Mostofa Patwary committed
322
323
324
325
326
def fix_query_key_value_ordering(model, checkpoint_version):
    """Fix up query/key/value matrix ordering if checkpoint
    version is smaller than 2.0
    """
    if checkpoint_version < 2.0:
327
328
329
        if isinstance(model, list):
            assert len(model)==1
            model = model[0]
Mostofa Patwary's avatar
Mostofa Patwary committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        for name, param in model.named_parameters():
            if name.endswith(('.query_key_value.weight', '.query_key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 3, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 3, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
            if name.endswith(('.key_value.weight', '.key_value.bias')):
                if checkpoint_version == 0:
                    fixed_param = _transpose_first_dim(param.data, 2, True, model)
                elif checkpoint_version == 1.0:
                    fixed_param = _transpose_first_dim(param.data, 2, False, model)
                else:
                    print_rank_0(f"Invalid checkpoint version {checkpoint_version}.")
                    sys.exit()
                param.data.copy_(fixed_param)
        print_rank_0(" succesfully fixed query-key-values ordering for"
                    " checkpoint version {}".format(checkpoint_version))

352
def load_checkpoint(model, optimizer, opt_param_scheduler, load_arg='load', strict=True):
353
354
355
356
357
    """Load a model checkpoint and return the iteration.
    strict (bool): whether to strictly enforce that the keys in
        :attr:`state_dict` of the checkpoint match the names of
        parameters and buffers in model.
    """
358
    args = get_args()
359
    load_dir = getattr(args, load_arg)
360

361
    model = utils.unwrap_model(model)
362

363
    # Read the tracker file and set the iteration.
364
    tracker_filename = get_checkpoint_tracker_filename(load_dir)
365
366
367
368
369
370
371
372
373
374
375

    # If no tracker file, return iretation zero.
    if not os.path.isfile(tracker_filename):
        print_rank_0('WARNING: could not find the metadata file {} '.format(
            tracker_filename))
        print_rank_0('    will not load any checkpoints and will start from '
                     'random')
        return 0

    # Otherwise, read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
376
    iteration, release = read_metadata(tracker_filename)
377
378

    # Checkpoint.
379
380
    model_checkpoint_name, optim_checkpoint_name = \
        get_checkpoint_names(load_dir, iteration, release)
Jared Casper's avatar
Jared Casper committed
381
    print_rank_0(f' loading checkpoint from {args.load} at iteration {iteration}')
382
383
384

    # Load the checkpoint.
    try:
385
386
        model_state_dict = torch.load(model_checkpoint_name, map_location='cpu')
        optim_state_dict = torch.load(optim_checkpoint_name, map_location='cpu')
387
    except ModuleNotFoundError:
mohammad's avatar
mohammad committed
388
        from megatron.fp16_deprecated import loss_scaler
389
390
391
        # For backward compatibility.
        print_rank_0(' > deserializing using the old code structure ...')
        sys.modules['fp16.loss_scaler'] = sys.modules[
mohammad's avatar
mohammad committed
392
393
394
            'megatron.fp16_deprecated.loss_scaler']
        sys.modules['megatron.fp16.loss_scaler'] = sys.modules[
            'megatron.fp16_deprecated.loss_scaler']
395
396
        model_state_dict = torch.load(model_checkpoint_name, map_location='cpu')
        optim_state_dict = torch.load(optim_checkpoint_name, map_location='cpu')
397
        sys.modules.pop('fp16.loss_scaler', None)
mohammad's avatar
mohammad committed
398
        sys.modules.pop('megatron.fp16.loss_scaler', None)
399
    except BaseException as e:
400
        print_rank_0('could not load the checkpoint')
401
        print_rank_0(e)
402
403
        sys.exit()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
404
    # set checkpoint version
405
    set_checkpoint_version(model_state_dict.get('checkpoint_version', 0))
Vijay Korthikanti's avatar
Vijay Korthikanti committed
406

407
408
409
410
411
    # Set iteration.
    if args.finetune or release:
        iteration = 0
    else:
        try:
412
            iteration = model_state_dict['iteration']
413
        except KeyError:
Neel Kant's avatar
Neel Kant committed
414
            try:  # Backward compatible with older checkpoints
415
                iteration = model_state_dict['total_iters']
416
417
418
419
420
421
422
            except KeyError:
                print_rank_0('A metadata file exists but unable to load '
                             'iteration from checkpoint {}, exiting'.format(
                                 checkpoint_name))
                sys.exit()

    # Check arguments.
mohammad's avatar
mohammad committed
423
424
    assert args.consumed_train_samples == 0
    assert args.consumed_valid_samples == 0
425
426
    if 'args' in model_state_dict:
        checkpoint_args = model_state_dict['args']
427
        check_checkpoint_args(checkpoint_args)
428
429
        args.consumed_train_samples = getattr(checkpoint_args,
                                              'consumed_train_samples', 0)
mohammad's avatar
mohammad committed
430
        update_num_microbatches(consumed_samples=args.consumed_train_samples)
431
432
        args.consumed_valid_samples = getattr(checkpoint_args,
                                              'consumed_valid_samples', 0)
433
434
435
436
    else:
        print_rank_0('could not find arguments in the checkpoint ...')

    # Model.
437
    if len(model) == 1:
438
        model[0].load_state_dict(model_state_dict['model'], strict=strict)
439
440
441
    else:
        for i in range(len(model)):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
442
            model[i].load_state_dict(model_state_dict['model%d' % i], strict=strict)
443

Mostofa Patwary's avatar
Mostofa Patwary committed
444
445
446
447
    # Fix up query/key/value matrix ordering if needed
    checkpoint_version = get_checkpoint_version()
    print_rank_0(f' checkpoint version {checkpoint_version}')
    fix_query_key_value_ordering(model, checkpoint_version)
448
449
450
451
452

    # Optimizer.
    if not release and not args.finetune and not args.no_load_optim:
        try:
            if optimizer is not None:
453
                optimizer.load_state_dict(optim_state_dict['optimizer'])
454
455
            if opt_param_scheduler is not None:
                if 'lr_scheduler' in state_dict: # backward compatbility
456
                    opt_param_scheduler.load_state_dict(optim_state_dict['lr_scheduler'])
457
                else:
458
                    opt_param_scheduler.load_state_dict(optim_state_dict['opt_param_scheduler'])
459
460
461
462
463
464
465
466
467
468
        except KeyError:
            print_rank_0('Unable to load optimizer from checkpoint {}. '
                         'Specify --no-load-optim or --finetune to prevent '
                         'attempting to load the optimizer state, '
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

    # rng states.
    if not release and not args.finetune and not args.no_load_rng:
        try:
469
470
            if 'rng_state' in state_dict:
                # access rng_state for data parallel rank
471
                if args.data_parallel_random_init:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
472

473
474
475
                    rng_state = state_dict['rng_state'][mpu.get_data_parallel_rank()]
                else:
                    rng_state = state_dict['rng_state'][0]
476
477
478
479
480
481
482
483
                random.setstate(rng_state['random_rng_state'])
                np.random.set_state(rng_state['np_rng_state'])
                torch.set_rng_state(rng_state['torch_rng_state'])
                torch.cuda.set_rng_state(rng_state['cuda_rng_state'])
                # Check for empty states array
                if not rng_state['rng_tracker_states']:
                    raise KeyError
                mpu.get_cuda_rng_tracker().set_states(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
484
                    rng_state['rng_tracker_states'])
485
486
487
488
489
490
491
492
493
494
            else:  # backward compatability
                random.setstate(state_dict['random_rng_state'])
                np.random.set_state(state_dict['np_rng_state'])
                torch.set_rng_state(state_dict['torch_rng_state'])
                torch.cuda.set_rng_state(state_dict['cuda_rng_state'])
                # Check for empty states array
                if not state_dict['rng_tracker_states']:
                    raise KeyError
                mpu.get_cuda_rng_tracker().set_states(
                    state_dict['rng_tracker_states'])
495
        except KeyError:
496
            print_rank_0('Unable to load rng state from checkpoint {}. '
497
                         'Specify --no-load-rng or --finetune to prevent '
498
                         'attempting to load the rng state, '
499
500
501
                         'exiting ...'.format(checkpoint_name))
            sys.exit()

Jared Casper's avatar
Jared Casper committed
502
503
504
505
506
507
    # Some utilities want to load a checkpoint without distributed being initialized
    if torch.distributed.is_initialized():
        torch.distributed.barrier()

    print_rank_0(f'  successfully loaded checkpoint from {args.load} '
                 f'at iteration {iteration}')
508
509

    return iteration
Neel Kant's avatar
Neel Kant committed
510
511


512
513
514
515
516
517
def load_biencoder_checkpoint(model, only_query_model=False,
        only_context_model=False, custom_load_path=None):
    """
    selectively load retrieval models for indexing/retrieving 
    from saved checkpoints
    """
Neel Kant's avatar
Neel Kant committed
518
519
520

    args = get_args()

521
    model = utils.unwrap_model(model)
Neel Kant's avatar
Neel Kant committed
522

523
    load_path = custom_load_path if custom_load_path is not None else args.load
Neel Kant's avatar
Neel Kant committed
524
525
526
527
528
529
530
531
532
533
534

    tracker_filename = get_checkpoint_tracker_filename(load_path)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    checkpoint_name = get_checkpoint_name(load_path, iteration, False)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
535
    ret_state_dict = state_dict['model']
Neel Kant's avatar
Neel Kant committed
536
537

    if only_query_model:
538
        ret_state_dict.pop('context_model')
Mostofa Patwary's avatar
Mostofa Patwary committed
539
    if only_context_model:
540
        ret_state_dict.pop('query_model')
Neel Kant's avatar
Neel Kant committed
541

542
543
    assert len(model) == 1
    model[0].load_state_dict(ret_state_dict)
Neel Kant's avatar
Neel Kant committed
544
545
546
547
548
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

Neel Kant's avatar
Neel Kant committed
549
    return model
550