optimizer.py 19 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
from megatron import print_rank_0

Rewon Child's avatar
Rewon Child committed
30
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47


def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


48
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
49
50
51
52
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
53
54
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55
56
57
58
59
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
60
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
61
62
63
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

64

mohammad's avatar
mohammad committed
65
66
67

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
68
69
70
71

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
                 params_have_main_grad):
mohammad's avatar
mohammad committed
72
73
74
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
75
76
77
78
79
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad

mohammad's avatar
mohammad committed
80

Rewon Child's avatar
Rewon Child committed
81
    def get_parameters(self):
82
83
84
85
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
86
87
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
88

Rewon Child's avatar
Rewon Child committed
89
90
    def clip_grad_norm(self, clip_grad):
        params = self.get_parameters()
91
        return clip_grad_norm_fp32(params, clip_grad)
92

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
93

Rewon Child's avatar
Rewon Child committed
94
95
96
97
    def count_zeros(self):
        params = self.get_parameters()
        return count_zeros_fp32(params)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
98

mohammad's avatar
mohammad committed
99
100
101
102
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
103

mohammad's avatar
mohammad committed
104
105
    @abstractmethod
    def get_loss_scale(self):
106
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
107
108
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
109

mohammad's avatar
mohammad committed
110
111
112
113
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
114

mohammad's avatar
mohammad committed
115
116
117
118
    @abstractmethod
    def step(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
119

120
121
    @abstractmethod
    def reload_model_params(self):
122
123
124
125
126
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
127
128
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
129

mohammad's avatar
mohammad committed
130
131
132
133
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
134

mohammad's avatar
mohammad committed
135
136
137
138
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
139

mohammad's avatar
mohammad committed
140
141
142
143
144
145
146
147
148
149
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
150

mohammad's avatar
mohammad committed
151
152
153
154
155
156
157
158
159
160
161
162
163
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)



Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
class Float16OptimizerWithFloat16Params(MegatronOptimizer):
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a contihuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, bf16, grad_scaler):

        super(Float16OptimizerWithFloat16Params, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad)

        self.bf16 = bf16
mohammad's avatar
mohammad committed
197
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
198
199
200
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
201
202
203

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
204
205
206
207
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
208
209

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
210
211
212
213
214
215
216
217
218
219
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
220
221

        # ======================
222
        # main parameter stuff
mohammad's avatar
mohammad committed
223
224
225
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
226
227
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
228
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
229
230
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
231
232
233
234
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
235
            float16_params_this_group = []
mohammad's avatar
mohammad committed
236
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
237
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
238
239
240
241
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
242
243
244
245
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
246
                        # Create a copy
247
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
248
                        # Copy tensor model parallel attributes.
249
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
250
                                                                  param)
251
                        if hasattr(param, 'shared'):
252
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
253
                        # Replace the optimizer params with the new fp32 copy.
254
                        param_group['params'][i] = main_param
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
255
                        fp32_from_float16_params_this_group.append(main_param)
256
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
257
                        if param in self.optimizer.state:
258
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
259
260
261
262
263
264
265
266
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
267
268
269
270
271
272
273
274
275
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
276
277
278
279
280
281
282
283
284
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())


    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
285
286
                float16_groups & fp32_from_fp32_groups."""
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
287
288
289
290
291
292
            _zero_grad_group_helper(group, set_to_none)
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


    def get_loss_scale(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
293
294
        if self.grad_scaler is None:
            return self._scale_one
mohammad's avatar
mohammad committed
295
296
297
        return self.grad_scaler.scale


298
    def _copy_model_grads_to_main_grads(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
299
300
301
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
302
            for model_param, main_param in zip(model_group, main_group):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
303
304
305
306
307
308
309
310
311
312
                if self.params_have_main_grad:
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
313
314


315
316
    def _unscale_main_grads_and_check_for_nan(self):
        main_grads = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
317
318
        # fp32 params fromm float16 ones.
        for main_group in self.fp32_from_float16_groups:
319
320
321
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
mohammad's avatar
mohammad committed
322
        # Append fp32 parameters.
323
324
325
326
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
mohammad's avatar
mohammad committed
327
328
329
330
        # Reset found inf.
        self.found_inf.fill_(0.0)
        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
331
            main_grads, self.found_inf, self.grad_scaler.inv_scale)
mohammad's avatar
mohammad committed
332
333
334
335
        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=mpu.get_model_parallel_group())
mohammad's avatar
mohammad committed
336
337
338
339
340
341

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)
        return found_inf_flag


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
342
    def _get_model_and_main_params_data_float16(self):
mohammad's avatar
mohammad committed
343
        model_data = []
344
        main_data = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
345
346
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
347
            for model_param, main_param in zip(model_group, main_group):
mohammad's avatar
mohammad committed
348
                model_data.append(model_param.data)
349
350
                main_data.append(main_param.data)
        return model_data, main_data
351
352


353
    def _copy_main_params_to_model_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
354
355
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
356
357
358
359
360
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
361
362
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
363
364
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
365
366
367


    def reload_model_params(self):
368
        self._copy_model_params_to_main_params()
mohammad's avatar
mohammad committed
369

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
370

mohammad's avatar
mohammad committed
371
372
373
374
375
    @torch.no_grad()
    def step(self):

        timers = get_timers()

376
377
378
379
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
        self._copy_model_grads_to_main_grads()
        timers('optimizer-copy-to-main-grad').stop()
mohammad's avatar
mohammad committed
380

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
381
382
383
        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:
mohammad's avatar
mohammad committed
384

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
385
386
387
388
            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()
mohammad's avatar
mohammad committed
389

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
390
391
392
393
394
395
396
            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
                return False, None, None
mohammad's avatar
mohammad committed
397

398
399
        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
400
401
402
        grad_norm = None
        if self.clip_grad > 0.0:
            grad_norm = self.clip_grad_norm(self.clip_grad)
403
        timers('optimizer-clip-main-grad').stop()
mohammad's avatar
mohammad committed
404

Rewon Child's avatar
Rewon Child committed
405
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
406
407
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
408

mohammad's avatar
mohammad committed
409
410
411
        # Step the optimizer.
        self.optimizer.step()

412
413
414
415
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
        self._copy_main_params_to_model_params()
        timers('optimizer-copy-main-to-model-params').stop()
mohammad's avatar
mohammad committed
416

mohammad's avatar
mohammad committed
417
        # Successful update.
418
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
419
420


mohammad's avatar
mohammad committed
421
422
423
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
424
425
426
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
427
428
429
430
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
431
432
433
434
435
436
437
438
439
440
441
442
443
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
444
445
446
447
448
449
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
450

451
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
452
453
454
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
455
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
456
457
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
458
459
460
461
462
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)



mohammad's avatar
mohammad committed
463
464
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
465
466
467
468
469
470
471
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
                 params_have_main_grad):

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad)
mohammad's avatar
mohammad committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
490
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
491

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
492
493
494
495
496
497
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

mohammad's avatar
mohammad committed
498
        # Clip gradients.
499
        grad_norm = None
mohammad's avatar
mohammad committed
500
        if self.clip_grad > 0.0:
501
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
502

Rewon Child's avatar
Rewon Child committed
503
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
504
505
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
506

mohammad's avatar
mohammad committed
507
508
509
510
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
511
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
512
513


514
515
516
517
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
518
519
520
521
522
523
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)