transformer.py 34.6 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""
import math
import torch
19
import torch.nn.functional as F
20

Mohammad's avatar
Mohammad committed
21
from megatron import get_args
22
from megatron import mpu
23
from .module import MegatronModule
24
from megatron.model.enums import AttnMaskType, ModelType, LayerType, AttnType
25
from megatron.model import LayerNorm
26
27
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
28
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
29
30
31
32
33
34
35
36
37
38
39

""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
40
    Transformer takes input of size [s, b, h] and returns a
41
42
43
44
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

45
46
47
48
49
50

class DropPath(MegatronModule):
    """Drop paths (Stochastic Depth) per sample 
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
51
    def __init__(self, drop_prob=0.):
52
53
54
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
55
    def forward(self, hidden_state):
56
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
57
            return hidden_state
58
59
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
Vijay Korthikanti's avatar
Vijay Korthikanti committed
60
        shape = (hidden_state.shape[0],) + (1,) * (hidden_state.ndim - 1)
61
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
62
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
63
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
64
        output = hidden_state.div(keep_prob) * random_tensor
65
66
67
        return output


68
69
70
71
72
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
73
    state back into h hidden dimension.
74
75
    """

76
    def __init__(self, init_method, output_layer_init_method):
77
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
78
        args = get_args()
79
80
81

        # Project to 4h.
        self.dense_h_to_4h = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
82
            args.hidden_size,
83
            args.ffn_hidden_size,
84
            gather_output=False,
85
86
            init_method=init_method,
            skip_bias_add=True)
87

88
89
90
91
92
93
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
94
95
96

        # Project back to h.
        self.dense_4h_to_h = mpu.RowParallelLinear(
97
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
98
            args.hidden_size,
99
            input_is_parallel=True,
100
101
            init_method=output_layer_init_method,
            skip_bias_add=True)
102

103
104
    def forward(self, hidden_states):

105
106
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
107

108
109
110
111
112
113
114
115
116
117
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
118
119


120
class ParallelAttention(MegatronModule):
121
122
123
124
125
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [b, s, h]
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
126

127
    def __init__(self, init_method,
128
129
130
131
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
132
        args = get_args()
Mohammad's avatar
Mohammad committed
133
        self.fp16 = args.fp16
134
        self.bf16 = args.bf16
135

Mohammad's avatar
Mohammad committed
136
137
        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
138
139
140
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
141
142
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
143
        self.params_dtype = args.params_dtype
144
145

        projection_size = args.kv_channels * args.num_attention_heads
146
147

        # Per attention head and per partition values.
148
        world_size = mpu.get_tensor_model_parallel_world_size()
149
        self.hidden_size_per_partition = mpu.divide(projection_size,
Mohammad's avatar
Mohammad committed
150
                                                    world_size)
151
        self.hidden_size_per_attention_head = mpu.divide(
152
            projection_size, args.num_attention_heads)
153
        self.num_attention_heads_per_partition = mpu.divide(
Mohammad's avatar
Mohammad committed
154
            args.num_attention_heads, world_size)
155
156

        # Strided linear layer.
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        if attention_type == AttnType.self_attn:
            self.query_key_value = mpu.ColumnParallelLinear(
                args.hidden_size,
                3 * projection_size,
                gather_output=False,
                init_method=init_method)
        else:
            assert attention_type == AttnType.cross_attn
            self.query = mpu.ColumnParallelLinear(
                args.hidden_size,
                projection_size,
                gather_output=False,
                init_method=init_method)

            self.key_value = mpu.ColumnParallelLinear(
                args.hidden_size,
                2 * projection_size,
                gather_output=False,
                init_method=init_method)
176

177
178
179
180
181
182
183
        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
184
            self.fp16, self.bf16,
185
186
            self.attn_mask_type,
            args.masked_softmax_fusion,
187
            attention_mask_func,
188
189
190
            self.attention_softmax_in_fp32,
            coeff)

191
192
193
        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
Mohammad's avatar
Mohammad committed
194
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
195
196
197

        # Output.
        self.dense = mpu.RowParallelLinear(
198
            projection_size,
Mohammad's avatar
Mohammad committed
199
            args.hidden_size,
200
            input_is_parallel=True,
201
202
            init_method=output_layer_init_method,
            skip_bias_add=True)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
203

204
205
206
207
208
209
210
211
212
213
214
215

    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())
        

    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
216
                encoder_output=None, inference_params=None):
217
        # hidden_states: [sq, b, h]
218

219
220
221
222

        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
mshoeybi's avatar
mshoeybi committed
223
        if inference_params:
224
            if self.layer_number not in inference_params.key_value_memory_dict:
mshoeybi's avatar
mshoeybi committed
225
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
226
                inf_max_batch_size = inference_params.max_batch_size
227
                inference_key_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
228
                    inf_max_seq_len, inf_max_batch_size)
229
                inference_value_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
230
                    inf_max_seq_len, inf_max_batch_size)
231
232
233
234
235
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
236

237

238
239
240
        # =====================
        # Query, Key, and Value
        # =====================
241

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
             value_layer) = mpu.split_tensor_along_last_dim(mixed_x_layer, 3)
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
             value_layer) = mpu.split_tensor_along_last_dim(mixed_kv_layer, 2)

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
277
278


mshoeybi's avatar
mshoeybi committed
279
280
281
        # ==================================
        # Adjust key and value for inference
        # ==================================
282

mshoeybi's avatar
mshoeybi committed
283
        if inference_params:
mshoeybi's avatar
mshoeybi committed
284
285
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
286
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
287
288
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
289
            assert sequence_end <= inference_key_memory.size(0)
290
            # Copy key and values.
291
292
293
294
295
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
296
                :sequence_end, batch_start:batch_end, ...]
297
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
298
                :sequence_end, batch_start:batch_end, ...]
299

300

301
302
303
        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================
304

305
        # [b, np, sq, sk]
306
307
308
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
309
                       key_layer.size(0))
310

311
        # [sq, b, np, hn] -> [sq, b * np, hn]
312
313
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
314
        # [sk, b, np, hn] -> [sk, b * np, hn]
315
316
317
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

318
        # preallocting result tensor: [b * np, sq, sk]
319
        matmul_result = torch.empty(
320
321
            output_size[0]*output_size[1],
            output_size[2],
322
            output_size[3],
323
            dtype=query_layer.dtype,
324
325
            device=torch.cuda.current_device())

326
        # Raw attention scores. [b * np, sq, sk]
327
328
        matmul_result = torch.baddbmm(
            matmul_result,
329
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
330
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
331
332
            beta=0.0, alpha=(1.0/self.norm_factor))

333
        # change view to [b, np, sq, sk]
334
335
        attention_scores = matmul_result.view(*output_size)

336

337
338
339
        # ===========================
        # Attention probs and dropout
        # ===========================
340

341
        # attention scores and attention mask [b, np, sq, sk]
342
343
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)
344

345
346
347
348
349
350
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        with mpu.get_cuda_rng_tracker().fork():
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
351
        # Context layer. [sq, b, hp]
352
353
        # =========================

354
355
        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]
356

357
        # context layer shape: [b, np, sq, hn]
358
359
360
361
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))
362

363
        # change view [sk, b * np, hn]
364
        value_layer = value_layer.view(value_layer.size(0),
365
                                       output_size[0] * output_size[1], -1)
366

367
        # change view [b * np, sq, sk]
368
369
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)
370

371
        # matmul: [b * np, sq, hn]
372
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
373

374
        # change view [b, np, sq, hn]
375
376
        context_layer = context_layer.view(*output_size)

377
        # [b, np, sq, hn] --> [sq, b, np, hn]
378
379
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

380
        # [sq, b, np, hn] --> [sq, b, hp]
381
382
383
384
385
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        # =================
386
        # Output. [sq, b, h]
387
388
389
        # =================

        output, bias = self.dense(context_layer)
390

391
392
393
        return output, bias


394
def bias_dropout_add(x, bias, residual, prob, training):
395
396
397
398
399
400
401
402
403
404
405
406
407
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
408
409
410
411
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: torch.Tensor,
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
412
413
414
415
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
416
417
418
419
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: torch.Tensor,
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
420
    return bias_dropout_add(x, bias, residual, prob, False)
421
422
423
424
425


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

426
    Transformer layer takes input with size [b, s, h] and returns an
427
428
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
429

430
431
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
432
433
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
434
        args = get_args()
435
436

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
437
        self.layer_number = layer_number
438
        self.layer_type = layer_type
439
440

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
441
            = args.apply_residual_connection_post_layernorm
442

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
443
444
445
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

446
447
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
448
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
449
            eps=args.layernorm_epsilon,
450
451
            no_persist_layer_norm=args.no_persist_layer_norm,
            sequence_parallel=args.model_parallel_memory_opt)
452
453

        # Self attention.
454
455
456
457
458
459
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
460
461
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
462
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
463

464
        # Layernorm on the attention output
465
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
466
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
467
            eps=args.layernorm_epsilon,
468
469
            no_persist_layer_norm=args.no_persist_layer_norm,
            sequence_parallel=args.model_parallel_memory_opt)
470

471
472
473
474
475
476
477
478
479
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
480
                eps=args.layernorm_epsilon,
481
482
                no_persist_layer_norm=args.no_persist_layer_norm,
                sequence_parallel=args.model_parallel_memory_opt)
483

484
        # MLP
485
        self.mlp = ParallelMLP(init_method,
Mohammad's avatar
Mohammad committed
486
                               output_layer_init_method)
487

488
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
489
490
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
491
492
        # hidden_states: [b, s, h]

493
        # Layer norm at the beginning of the transformer layer.
494
495
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
496
        attention_output, attention_bias = \
497
498
499
            self.self_attention(
                layernorm_output,
                attention_mask,
mshoeybi's avatar
mshoeybi committed
500
                inference_params=inference_params)
501

502
503
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
504
505
506
507
            residual = layernorm_output
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
508
        if self.drop_path is None:
509
510
511
512
513
514
515
516
517
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
518
            else:
519
                bias_dropout_add_func = get_bias_dropout_add(self.training)
520

521
522
523
524
525
526
527
528
529
530
531
532
            # re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            layernorm_input = residual + self.drop_path(out)
533

534
535
536
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

            # re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

559
        # MLP.
560
        mlp_output, mlp_bias = self.mlp(layernorm_output)
561

562
563
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
564
            residual = layernorm_output
565
        else:
566
567
            residual = layernorm_input

Vijay Korthikanti's avatar
Vijay Korthikanti committed
568
        if self.drop_path is None:
569
570
571
572
573
574
575
576
577
578
579
580
            # re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
                output = bias_dropout_add_func(
                    mlp_output,
                    mlp_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(mlp_output + mlp_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
581
582
583
584

        return output


585
586
587
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
588
    The sole purpose of this layer is for when a standalone embedding layer
589
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
590
591
592
593
594
595
596
597
598
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
599
600
601
602
603
604
605
606
607
608
609
610
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


611
612
613
class ParallelTransformer(MegatronModule):
    """Transformer class."""

614
    def __init__(self, init_method, output_layer_init_method,
615
                 layer_type=LayerType.encoder,
616
                 self_attn_mask_type=AttnMaskType.padding,
617
618
                 pre_process=True, post_process=True,
                 drop_path_rate=0.0):
619
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
620
        args = get_args()
621

622
623
        self.layer_type = layer_type
        self.model_type = args.model_type
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
624
        self.bf16 = args.bf16
625
        self.fp32_residual_connection = args.fp32_residual_connection
626
627
628
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
629
        self.drop_path_rate = drop_path_rate
630

631
        # Store activation checkpoiting flag.
632
633
        self.activations_checkpoint_method = args.activations_checkpoint_method
        self.activations_checkpoint_num_layers = args.activations_checkpoint_num_layers
634
635
        self.distribute_checkpointed_activations = \
            args.distribute_checkpointed_activations and not args.model_parallel_memory_opt
636

637
638
        self.model_parallel_memory_opt = args.model_parallel_memory_opt

639
        # Number of layers.
640
641
        self.num_layers = mpu.get_num_layers(
            args, args.model_type == ModelType.encoder_and_decoder)
Mohammad's avatar
Mohammad committed
642

Vijay Korthikanti's avatar
Vijay Korthikanti committed
643
        self.drop_path_rates = [rate.item() for rate in torch.linspace(0, self.drop_path_rate, args.num_layers)]
644

Mohammad's avatar
Mohammad committed
645
646
        # Transformer layers.
        def build_layer(layer_number):
647
            return ParallelTransformerLayer(
648
649
650
                init_method,
                output_layer_init_method,
                layer_number,
651
                layer_type=layer_type,
652
                self_attn_mask_type=self_attn_mask_type,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
653
                drop_path_rate=self.drop_path_rates[layer_number - 1])
654
655
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
656
657
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
658
            assert args.model_type != ModelType.encoder_and_decoder
659
660
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
661
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
662
663
664
665
666
667
668
669
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
670
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
671
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
672
673
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
        else:
674
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
675
676
            if args.model_type == ModelType.encoder_and_decoder and \
                    mpu.get_pipeline_model_parallel_world_size() > 1:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
677
678
679
680
681
682
683
684
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
685

686
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
687
            # When a standalone embedding stage is used (e.g.,
688
            # args.standalone_embedding_stage == True), virtual pipeline ranks
689
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
690
691
692
693
694
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
695
696
697
698
699
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
700

701
        if self.post_process:
702
703
704
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
705
                eps=args.layernorm_epsilon,
706
707
                no_persist_layer_norm=args.no_persist_layer_norm,
                sequence_parallel=args.model_parallel_memory_opt)
708

Mohammad's avatar
Mohammad committed
709
    def _get_layer(self, layer_number):
710
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
711

712
713
    def _checkpointed_forward(self, hidden_states, attention_mask,
                              encoder_output, enc_dec_attn_mask):
714
715
716
717
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                x_ = inputs[0]
718
719
720
                attention_mask = inputs[1]
                encoder_output = inputs[2]
                enc_dec_attn_mask = inputs[3]
Mohammad's avatar
Mohammad committed
721
722
                for index in range(start, end):
                    layer = self._get_layer(index)
723
                    x_ = layer(x_, attention_mask, encoder_output, enc_dec_attn_mask)
724
725
726
                return x_
            return custom_forward

727
728
729
730
731
732
733
734
        if self.activations_checkpoint_method == 'uniform':
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
                hidden_states = mpu.checkpoint(
                    custom(l, l + self.activations_checkpoint_num_layers),
735
                    self.distribute_checkpointed_activations,
736
737
738
739
740
741
742
743
744
745
                    hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                l += self.activations_checkpoint_num_layers
        elif self.activations_checkpoint_method == 'block':
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
                if l < self.activations_checkpoint_num_layers:
                    hidden_states = mpu.checkpoint(
                        custom(l, l + 1),
746
                        self.distribute_checkpointed_activations,
747
748
749
750
751
752
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                else:
                    hidden_states = custom(l, l + 1)(
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
        else:
            raise ValueError("Invalid activation checkpoint method.")
753
754
755

        return hidden_states

756
    def set_input_tensor(self, input_tensor):
757
758
759
760
761
762
763
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
764
765
        self.input_tensor = input_tensor

766
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
767
768
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
769

770
        # Checks.
mshoeybi's avatar
mshoeybi committed
771
        if inference_params:
772
            assert self.activations_checkpoint_method is None, \
773
                'inference does not work with activation checkpointing'
774

775
        if self.pre_process:
776
            # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
mshoeybi's avatar
mshoeybi committed
777
            # If the input flag for fp32 residual connection is set, convert for float.
778
779
            if self.fp32_residual_connection:
                hidden_states = hidden_states.transpose(0, 1).contiguous().float()
mshoeybi's avatar
mshoeybi committed
780
            # Otherwise, leave it as is.
781
782
            else:
                hidden_states = hidden_states.transpose(0, 1).contiguous()
783
784

            if self.model_parallel_memory_opt:
785
                hidden_states = mpu.scatter_to_sequence_parallel_region(hidden_states)
786

787
        else:
788
            # See set_input_tensor()
789
            hidden_states = self.input_tensor
790

791
792
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
793
794
795
796
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
        # 
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
        hidden_states = mpu.make_viewless_tensor(
            hidden_states,
            requires_grad = True,
            keep_graph = True,
        )

        # Transpose encoder output.
813
814
        if encoder_output is not None and \
                not self.model_parallel_memory_opt:
815
            encoder_output = encoder_output.transpose(0, 1).contiguous()
816
817
818
            if self.model_parallel_memory_opt:
                encoder_output = mpu.scatter_to_sequence_parallel_region(encoder_output)

819
        # Forward pass.
820
        if self.activations_checkpoint_method is not None:
821
            hidden_states = self._checkpointed_forward(hidden_states,
822
823
824
                                                       attention_mask,
                                                       encoder_output,
                                                       enc_dec_attn_mask)
825
        else:
Mohammad's avatar
Mohammad committed
826
827
            for index in range(self.num_layers):
                layer = self._get_layer(index)
828
829
830
831
832
                hidden_states = layer(
                    hidden_states,
                    attention_mask,
                    encoder_output=encoder_output,
                    enc_dec_attn_mask=enc_dec_attn_mask,
mshoeybi's avatar
mshoeybi committed
833
834
                    inference_params=inference_params)

835

836
        # Final layer norm.
837
        if self.post_process:
838
            # Reverting data format change [s b h] --> [b s h].
839
840
            hidden_states = self.final_layernorm(hidden_states)

841
842
843
844
845
846
847
            if self.layer_type==LayerType.encoder and \
                    self.model_type==ModelType.encoder_and_decoder and \
                    self.model_parallel_memory_opt:
                output = hidden_states
            else:
                if self.model_parallel_memory_opt:
                    hidden_states = mpu.gather_from_sequence_parallel_region(hidden_states)
848

849
                output = hidden_states.transpose(0, 1).contiguous()
850
851
        else:
            output = hidden_states
852

853

854
        return output