hashed_index.py 17.1 KB
Newer Older
Neel Kant's avatar
Neel Kant committed
1
from collections import defaultdict
Neel Kant's avatar
Neel Kant committed
2
import os
Neel Kant's avatar
Neel Kant committed
3
import pickle
Neel Kant's avatar
Neel Kant committed
4
import shutil
Neel Kant's avatar
Neel Kant committed
5

Neel Kant's avatar
Neel Kant committed
6
7
8
9
10
11
12
13
14
15
16
import numpy as np
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

from megatron import get_args
from megatron import mpu
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
from megatron.data.bert_dataset import get_indexed_dataset_
from megatron.data.ict_dataset import InverseClozeDataset
from megatron.data.samplers import DistributedBatchSampler
from megatron.initialize import initialize_megatron
Neel Kant's avatar
Neel Kant committed
17
from megatron.model import REALMRetriever
Neel Kant's avatar
Neel Kant committed
18
19
20
21
from megatron.training import get_model
from pretrain_bert_ict import get_batch, model_provider


22
23
24
25
def detach(tensor):
    return tensor.detach().cpu().numpy()


Neel Kant's avatar
Neel Kant committed
26
27
class HashedIndex(object):
    """Class for holding hashed data"""
Neel Kant's avatar
Neel Kant committed
28
    def __init__(self, embed_size, num_buckets, whiten=False, seed=0):
Neel Kant's avatar
Neel Kant committed
29
30
31
        np.random.seed(seed)
        self.block_data = defaultdict(list)
        self.hash_data = defaultdict(list)
Neel Kant's avatar
Neel Kant committed
32
        hash_matrix = 2 * np.random.rand(embed_size, int(num_buckets / 2)) - 1
Neel Kant's avatar
Neel Kant committed
33
        self.hash_matrix = hash_matrix / np.linalg.norm(hash_matrix, axis=0).reshape(1, -1)
Neel Kant's avatar
Neel Kant committed
34
35
36
        self.embed_mean = None
        self.embed_whitener = None
        self.whiten = whiten
Neel Kant's avatar
Neel Kant committed
37
38

        # alsh
Neel Kant's avatar
Neel Kant committed
39
        self.m = 5
Neel Kant's avatar
Neel Kant committed
40
41
        self.u = 0.99
        self.max_norm = None
Neel Kant's avatar
Neel Kant committed
42
43
44
45
46

    def state(self):
        state = {
            'block_data': self.block_data,
            'hash_data': self.hash_data,
Neel Kant's avatar
Neel Kant committed
47
48
49
            'hash_matrix': self.hash_matrix,
            'embed_mean': self.embed_mean,
            'embed_whitener': self.embed_whitener,
Neel Kant's avatar
Neel Kant committed
50
51
52
53
54
55
56
57
58
59
60
        }
        return state

    def get_block_bucket(self, hash):
        return self.hash_data[hash]

    def get_block_embed(self, block_idx):
        return self.block_data[block_idx]

    def hash_embeds(self, embeds, block_data=None):
        """Hash a tensor of embeddings using a random projection matrix"""
Neel Kant's avatar
Neel Kant committed
61
        embed_scores_pos = torch.matmul(embeds, torch.cuda.FloatTensor(self.hash_matrix))
Neel Kant's avatar
Neel Kant committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
        embed_scores = torch.cat((embed_scores_pos, -embed_scores_pos), axis=1)
        embed_hashes = detach(torch.argmax(embed_scores, axis=1))

        if block_data is not None:
            for hash, indices in zip(embed_hashes, block_data):
                self.hash_data[hash].append(indices)

        return embed_hashes

    def assign_block_embeds(self, block_indices, block_embeds, allow_overwrite=False):
        """Assign the embeddings for each block index into a hash map"""
        for idx, embed in zip(block_indices, block_embeds):
            if not allow_overwrite and int(idx) in self.block_data:
                raise ValueError("Attempted to overwrite a read-only HashedIndex")
Neel Kant's avatar
Neel Kant committed
76
            self.block_data[int(idx)] = np.float16(embed)
Neel Kant's avatar
Neel Kant committed
77
78
79
80
81
82
83
84
85
86

    def save_shard(self, rank):
        dir_name = 'block_hash_data'
        if not os.path.isdir(dir_name):
            os.mkdir(dir_name)

        # save the data for each shard
        with open('{}/{}.pkl'.format(dir_name, rank), 'wb') as data_file:
            pickle.dump(self.state(), data_file)

Neel Kant's avatar
Neel Kant committed
87
    def consolidate_shards_and_save(self, ignore_shard=0):
Neel Kant's avatar
Neel Kant committed
88
89
90
91
92
93
        """Combine all the shards made using self.save_shard()"""
        dir_name = 'block_hash_data'
        fnames = os.listdir(dir_name)
        for fname in fnames:
            with open('{}/{}'.format(dir_name, fname), 'rb') as f:
                data = pickle.load(f)
Neel Kant's avatar
Neel Kant committed
94
                assert np.array_equal(data['hash_matrix'], self.hash_matrix)
Neel Kant's avatar
Neel Kant committed
95
96
97
98

                old_size = len(self.block_data)
                shard_size = len(data['block_data'])
                self.block_data.update(data['block_data'])
Neel Kant's avatar
Neel Kant committed
99
                assert (len(self.block_data) == old_size + shard_size) or (str(ignore_shard) in fname)
Neel Kant's avatar
Neel Kant committed
100

Neel Kant's avatar
Neel Kant committed
101
102
103
104
105
106
                if not self.whiten:
                    for bucket, items in data['hash_data'].items():
                        self.hash_data[bucket].extend(items)

        if self.whiten:
            self.whiten_block_embeds()
Neel Kant's avatar
Neel Kant committed
107

Neel Kant's avatar
Neel Kant committed
108
109
        args = get_args()
        with open(args.hash_data_path, 'wb') as final_file:
Neel Kant's avatar
Neel Kant committed
110
111
112
113
114
            pickle.dump(self.state(), final_file)
        shutil.rmtree(dir_name, ignore_errors=True)

    def clear(self):
        """Clear the data structures to save memory"""
Neel Kant's avatar
Neel Kant committed
115
116
117
118
119
120
121
122
123
124
125
126
127
        self.block_data = dict()
        self.hash_data = defaultdict(list)

    def whiten_block_embeds(self):
        """Transform all block embeds to have zero mean and unit covariance
        when treated as samples from a distribution"""
        block_idx, all_embeds = zip(*self.block_data.items())
        arr_embeds = np.transpose(np.array(all_embeds))

        mean = np.mean(arr_embeds, axis=1).reshape(-1, 1)
        centered = arr_embeds - mean
        inv_cov = np.linalg.inv(np.cov(arr_embeds))
        whitener = np.transpose(np.linalg.cholesky(inv_cov))
Neel Kant's avatar
Neel Kant committed
128
        whitened = np.float16(np.transpose(whitener.dot(centered)))
Neel Kant's avatar
Neel Kant committed
129
130
131
132

        self.embed_mean = mean.reshape(-1)
        self.embed_whitener = whitener
        self.block_data = dict(zip(block_idx, list(whitened)))
Neel Kant's avatar
Neel Kant committed
133
        self.hash_data = defaultdict(list)
Neel Kant's avatar
Neel Kant committed
134
135
136
        batch_size = 16384
        i = 0

Neel Kant's avatar
Neel Kant committed
137
        args = get_args()
Neel Kant's avatar
Neel Kant committed
138
139
140
        with torch.no_grad():
            hashing_tensor = torch.cuda.HalfTensor(self.hash_matrix)
            while True:
Neel Kant's avatar
Neel Kant committed
141
142
                if args.debug:
                    print(i, flush=True)
Neel Kant's avatar
Neel Kant committed
143
144
145
                batch_slice = slice(i * batch_size, (i + 1) * batch_size)
                batch_embed = torch.cuda.HalfTensor(whitened[batch_slice])
                batch_block_idx = block_idx[batch_slice]
Neel Kant's avatar
Neel Kant committed
146
                if len(batch_block_idx) == 0:
Neel Kant's avatar
Neel Kant committed
147
148
149
150
151
152
153
154
                    break

                hash_scores_pos = torch.matmul(batch_embed, hashing_tensor)
                embed_scores = torch.cat((hash_scores_pos, -hash_scores_pos), axis=1)
                embed_hashes = detach(torch.argmax(embed_scores, axis=1))
                for hash, embed in zip(list(embed_hashes), list(detach(batch_embed))):
                    # [int] instead of [array<int>] since this is just for analysis rn
                    self.hash_data[hash].append(batch_block_idx)
Neel Kant's avatar
Neel Kant committed
155
156
                i += 1

Neel Kant's avatar
Neel Kant committed
157

Neel Kant's avatar
Neel Kant committed
158
159
160
161
162
163
    def create_block_data_index(self):
        import faiss
        self.block_idx, block_embeds = zip(*self.block_data.items())
        block_embeds = np.array(block_embeds)

        index = faiss.IndexFlatL2(block_embeds.shape[1])
Neel Kant's avatar
Neel Kant committed
164
165
        alsh_preprocessed_blocks = self.alsh_block_preprocess_fn()
        index.add(alsh_preprocessed_blocks)
Neel Kant's avatar
Neel Kant committed
166
167
168
        print('Total blocks in index: ', index.ntotal)
        self.block_index = index

Neel Kant's avatar
Neel Kant committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    def get_norm_powers_and_halves_array(self, embeds):
        norm = np.linalg.norm(embeds, axis=1)
        norm_powers = [np.multiply(norm, norm)]  # squared L2 norms of all
        for i in range(self.m - 1):
            norm_powers.append(np.multiply(norm_powers[-1], norm_powers[-1]))
        # [num_blocks x self.m]
        norm_powers = np.transpose(np.array(norm_powers))
        halves_array = 0.5 * np.ones(norm_powers.shape)

        return norm_powers, halves_array

    def alsh_block_preprocess_fn(self):
        block_idx, block_embeds = zip(*self.block_data.items())
        block_embeds = np.array(block_embeds)
        if self.max_norm is None:
            self.max_norm = max(np.linalg.norm(block_embeds, axis=1))
        if self.max_norm > 1:
            block_embeds = self.u / self.max_norm * block_embeds
        norm_powers, halves_array = self.get_norm_powers_and_halves_array(block_embeds)

        # P'(S(x)) for all x in block_embeds
        return np.concatenate((block_embeds, norm_powers, halves_array), axis=1)

    def alsh_query_preprocess_fn(self, query_embeds):
        norm = np.linalg.norm(query_embeds, axis=1)
        max_norm = max(norm)
        if max_norm > 1:
            query_embeds = self.u / max_norm * query_embeds
        norm_powers, halves_array = self.get_norm_powers_and_halves_array(query_embeds)

        # Q'(S(x)) for all x in query_embeds
        return np.concatenate((query_embeds, halves_array, norm_powers), axis=1)

Neel Kant's avatar
Neel Kant committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    def exact_mips_equals(self, query_embeds):
        """For each query, determine whether the mips block is in the correct hash bucket"""
        _, block_embeds = zip(*self.block_data.items())
        with torch.no_grad():
            # get hashes for the queries
            hash_scores_pos = torch.matmul(torch.cuda.HalfTensor(query_embeds), torch.cuda.HalfTensor(self.hash_matrix))
            hash_scores = torch.cat((hash_scores_pos, -hash_scores_pos), axis=1)
            query_hashes = detach(torch.argmax(hash_scores, axis=1))

            # [num_query x num_blocks]
            inner_products = torch.matmul(torch.cuda.HalfTensor(query_embeds),
                                          torch.cuda.HalfTensor(np.transpose(np.array(block_embeds))))
            max_inner_product_idxes = detach(torch.argmax(inner_products, axis=1))
            best_blocks = [self.block_data[idx] for idx in max_inner_product_idxes]
            best_blocks_tensor = torch.cuda.HalfTensor(np.array(best_blocks))
            # bb = best_blocks
            bb_hash_scores_pos = torch.matmul(torch.cuda.HalfTensor(best_blocks_tensor), torch.cuda.HalfTensor(self.hash_matrix))
            bb_hash_scores = torch.cat((bb_hash_scores_pos, -bb_hash_scores_pos), axis=1)
            best_block_hashes = detach(torch.argmax(bb_hash_scores, axis=1))
Neel Kant's avatar
Neel Kant committed
221
222
223

            print('Query hashes: ', query_hashes)
            print('Block hashes: ', best_block_hashes)
Neel Kant's avatar
Neel Kant committed
224
225
226
227
228
            equal_arr = np.equal(query_hashes, best_block_hashes).astype(int)

            # array of zeros and ones which can be used for counting success
            return equal_arr

Neel Kant's avatar
Neel Kant committed
229
    def exact_mips_test(self, whitened, num_queries, alsh):
Neel Kant's avatar
Neel Kant committed
230
231
232
        if whitened:
            if self.embed_mean is None:
                self.whiten_block_embeds()
Neel Kant's avatar
Neel Kant committed
233
            query_embeds = np.random.multivariate_normal(np.zeros(128), np.eye(128), num_queries)
Neel Kant's avatar
Neel Kant committed
234
235
236
237
238
239
            if alsh:
                self.create_block_data_index()
                alsh_queries = self.alsh_query_preprocess_fn(query_embeds)
                neighbor_ids, distances = self.block_idx.search(alsh_queries, 5)
                print('DONE')
                return
Neel Kant's avatar
Neel Kant committed
240
241
242
243
244
245
        else:
            block_idx, all_embeds = zip(*self.block_data.items())
            arr_embeds = np.transpose(np.array(all_embeds))

            mean = np.mean(arr_embeds, axis=1).reshape(-1, 1)
            cov = np.cov(arr_embeds)
Neel Kant's avatar
Neel Kant committed
246
            query_embeds = np.random.multivariate_normal(mean, cov, num_queries)
Neel Kant's avatar
Neel Kant committed
247
248
249

        equal_arr = self.exact_mips_equals(query_embeds)
        print("Num correct: ", sum(equal_arr), " Fraction correct: ", sum(equal_arr) / equal_arr.size)
Neel Kant's avatar
Neel Kant committed
250
        print(equal_arr)
Neel Kant's avatar
Neel Kant committed
251

Neel Kant's avatar
Neel Kant committed
252
253
    @classmethod
    def load_from_file(cls, fname):
Neel Kant's avatar
Neel Kant committed
254
        print(" > Unpickling block hash data")
Neel Kant's avatar
Neel Kant committed
255
        state_dict = pickle.load(open(fname, 'rb'))
Neel Kant's avatar
Neel Kant committed
256
        print(" > Finished unpickling")
Neel Kant's avatar
Neel Kant committed
257
258
259
260
261
        hash_matrix = state_dict['hash_matrix']

        new_index = HashedIndex(hash_matrix.shape[0], hash_matrix.shape[1] * 2)
        new_index.block_data = state_dict['block_data']
        new_index.hash_data = state_dict['hash_data']
Neel Kant's avatar
Neel Kant committed
262
263
        new_index.embed_mean = state_dict.get('embed_mean')
        new_index.embed_whitener = state_dict.get('embed_whitener')
Neel Kant's avatar
Neel Kant committed
264
        new_index.hash_matrix = hash_matrix
Neel Kant's avatar
Neel Kant committed
265

Neel Kant's avatar
Neel Kant committed
266
267
        return new_index

Neel Kant's avatar
Neel Kant committed
268

Neel Kant's avatar
Neel Kant committed
269
270
271
def test_retriever():
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
Neel Kant's avatar
Neel Kant committed
272
    args = get_args()
Neel Kant's avatar
Neel Kant committed
273
    model = load_ict_checkpoint(only_block_model=True)
Neel Kant's avatar
Neel Kant committed
274
    model.eval()
Neel Kant's avatar
Neel Kant committed
275
    dataset = get_ict_dataset()
Neel Kant's avatar
Neel Kant committed
276
    hashed_index = HashedIndex.load_from_file(args.hash_data_path)
Neel Kant's avatar
Neel Kant committed
277
    retriever = REALMRetriever(model, dataset, hashed_index)
Neel Kant's avatar
Neel Kant committed
278
279
280
281
282
283
284
285
286
287

    strs = [
        "The last monarch from the house of windsor",
        "married to Elvis Presley",
        "tallest building in the world today",
        "who makes graphics cards"
    ]

    for s in strs:
        retriever.retrieve_evidence_blocks_text(s)
Neel Kant's avatar
Neel Kant committed
288
289


Neel Kant's avatar
Neel Kant committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
def main():

    # TODO
    # consider broadcasting/all-reducing all in memory rather than using the filesystem
    # create a different process group in the same nccl world - don't have to use chkpts on disc or transfer things on disc
    # torch distributed new group, constains a list of rank, gives back a group which I can hand to the collective operations
    # create a training process group, indexing process group
    # pass the training group to the distributed DDP, instead of the large world process group
    # use indexing process group for the shard-combining
    # communication group between process "8" and process "0" which tells training group that there's a new index
    # also, process 0 sends process 8 the new model

    # if i want to launch a separate process for indexing, may have to work with environment variables to
    # allocate the resources well. Have to subsequently assign the correct gpus to the indexing job
    # consider initializing everything in a single group and break off processes based on the ranks

Neel Kant's avatar
Neel Kant committed
306
307
308
    # for debugging purposes, make it so that the training process group checks every some number of intervals
    # and if it isn't ready, then wait so that it's consistent. Start with using the filesystem

Neel Kant's avatar
Neel Kant committed
309
310
311
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
    args = get_args()
Neel Kant's avatar
Neel Kant committed
312
    model = load_ict_checkpoint(only_block_model=True, no_grad=True)
Neel Kant's avatar
Neel Kant committed
313
    model.eval()
Neel Kant's avatar
Neel Kant committed
314
    dataset = get_ict_dataset()
Neel Kant's avatar
Neel Kant committed
315
316
    data_iter = iter(get_one_epoch_dataloader(dataset))
    hashed_index = HashedIndex(embed_size=128, num_buckets=4096, whiten=True)
Neel Kant's avatar
Neel Kant committed
317

Neel Kant's avatar
Neel Kant committed
318
319
320
    i = 1
    total = 0
    whiten = False
Neel Kant's avatar
Neel Kant committed
321
322
    while True:
        try:
Neel Kant's avatar
Neel Kant committed
323
324
            query_tokens, query_pad_mask, \
            block_tokens, block_pad_mask, block_indices = get_batch(data_iter)
325
        except:
Neel Kant's avatar
Neel Kant committed
326
            break
327

Neel Kant's avatar
Neel Kant committed
328
        block_indices = detach(block_indices)
Neel Kant's avatar
Neel Kant committed
329
        block_logits = model(None, None, block_tokens, block_pad_mask, only_block=True)
Neel Kant's avatar
Neel Kant committed
330

Neel Kant's avatar
Neel Kant committed
331
        # If whitened, then hashing needs to be done after whitening the block embeds
Neel Kant's avatar
Neel Kant committed
332
333
334
335
336
        # which is done in consolidate_shards_and_save()
        if not whiten:
            hashed_index.hash_embeds(block_logits, block_indices)
        hashed_index.assign_block_embeds(block_indices[:, 3], detach(block_logits))

Neel Kant's avatar
Neel Kant committed
337
        total += block_indices.shape[0]
338
        i += 1
Neel Kant's avatar
Neel Kant committed
339
340
341
342
        if i % 20 == 0:
            print('Batch {:10d} | Total {:10d}'.format(i, total), flush=True)
            if args.debug:
                break
343

Neel Kant's avatar
Neel Kant committed
344
    hashed_index.save_shard(args.rank)
Neel Kant's avatar
Neel Kant committed
345
    torch.distributed.barrier()
346
347
    del model

Neel Kant's avatar
Neel Kant committed
348
    if args.rank == 0:
Neel Kant's avatar
Neel Kant committed
349
350
351
        hashed_index.consolidate_shards_and_save()
    else:
        hashed_index.clear()
Neel Kant's avatar
Neel Kant committed
352
353


Neel Kant's avatar
Neel Kant committed
354
def load_ict_checkpoint(only_query_model=False, only_block_model=False, no_grad=False):
Neel Kant's avatar
Neel Kant committed
355
    args = get_args()
Neel Kant's avatar
Neel Kant committed
356
    model = get_model(lambda: model_provider(only_query_model, only_block_model))
Neel Kant's avatar
Neel Kant committed
357
358
359

    if isinstance(model, torchDDP):
        model = model.module
Neel Kant's avatar
Neel Kant committed
360
    tracker_filename = get_checkpoint_tracker_filename(args.ict_load)
Neel Kant's avatar
Neel Kant committed
361
362
363
364
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    assert iteration > 0
Neel Kant's avatar
Neel Kant committed
365
    checkpoint_name = get_checkpoint_name(args.ict_load, iteration, False)
Neel Kant's avatar
Neel Kant committed
366
367
368
369
370
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
Neel Kant's avatar
Neel Kant committed
371
372
373
374
375
376
377
378
379
    if only_query_model:
        state_dict['model'].pop('context_model')
    if only_block_model:
        state_dict['model'].pop('question_model')
    if no_grad:
        with torch.no_grad():
            model.load_state_dict(state_dict['model'])
    else:
        model.load_state_dict(state_dict['model'])
Neel Kant's avatar
Neel Kant committed
380
381
382
383
384
385
386
387
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    return model


Neel Kant's avatar
Neel Kant committed
388
def get_ict_dataset():
Neel Kant's avatar
Neel Kant committed
389
    args = get_args()
Neel Kant's avatar
Neel Kant committed
390
    block_dataset = get_indexed_dataset_(args.data_path, 'mmap', True)
Neel Kant's avatar
Neel Kant committed
391
    titles_dataset = get_indexed_dataset_(args.titles_data_path, 'mmap', True)
Neel Kant's avatar
Neel Kant committed
392
393
394

    kwargs = dict(
        name='full',
Neel Kant's avatar
Neel Kant committed
395
396
        block_dataset=block_dataset,
        title_dataset=titles_dataset,
Neel Kant's avatar
Neel Kant committed
397
        data_prefix=args.data_path,
Neel Kant's avatar
Neel Kant committed
398
399
        num_epochs=1,
        max_num_samples=None,
Neel Kant's avatar
Neel Kant committed
400
401
402
403
404
405
406
407
        max_seq_length=288,  # doesn't matter
        short_seq_prob=0.0001,  # doesn't matter
        seed=1
    )
    dataset = InverseClozeDataset(**kwargs)
    return dataset


Neel Kant's avatar
Neel Kant committed
408
def get_one_epoch_dataloader(dataset):
Neel Kant's avatar
Neel Kant committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    global_batch_size = args.batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=True,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


if __name__ == "__main__":
Neel Kant's avatar
Neel Kant committed
430
    main()