hashed_index.py 8.02 KB
Newer Older
Neel Kant's avatar
Neel Kant committed
1
from collections import defaultdict
Neel Kant's avatar
Neel Kant committed
2
import os
Neel Kant's avatar
Neel Kant committed
3
import pickle
Neel Kant's avatar
Neel Kant committed
4
import shutil
Neel Kant's avatar
Neel Kant committed
5

Neel Kant's avatar
Neel Kant committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import numpy as np
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

from megatron import get_args
from megatron import mpu
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
from megatron.data.bert_dataset import get_indexed_dataset_
from megatron.data.ict_dataset import InverseClozeDataset
from megatron.data.samplers import DistributedBatchSampler
from megatron.initialize import initialize_megatron
from megatron.training import get_model
from pretrain_bert_ict import get_batch, model_provider


21
22
23
24
def detach(tensor):
    return tensor.detach().cpu().numpy()


Neel Kant's avatar
Neel Kant committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
class HashedIndex(object):
    """Class for holding hashed data"""
    def __init__(self, embed_size, num_buckets, seed=0):
        np.random.seed(seed)
        self.block_data = defaultdict(list)
        self.hash_data = defaultdict(list)
        self.hash_matrix = np.random.rand(embed_size, num_buckets / 2)

    def state(self):
        state = {
            'block_data': self.block_data,
            'hash_data': self.hash_data,
            'hash_matrix': self.hash_matrix
        }
        return state

    def get_block_bucket(self, hash):
        return self.hash_data[hash]

    def get_block_embed(self, block_idx):
        return self.block_data[block_idx]

    def hash_embeds(self, embeds, block_data=None):
        """Hash a tensor of embeddings using a random projection matrix"""
        embed_scores_pos = torch.matmul(embeds, torch.cuda.HalfTensor(self.hash_matrix))
        embed_scores = torch.cat((embed_scores_pos, -embed_scores_pos), axis=1)
        embed_hashes = detach(torch.argmax(embed_scores, axis=1))

        if block_data is not None:
            for hash, indices in zip(embed_hashes, block_data):
                self.hash_data[hash].append(indices)

        return embed_hashes

    def assign_block_embeds(self, block_indices, block_embeds, allow_overwrite=False):
        """Assign the embeddings for each block index into a hash map"""
        for idx, embed in zip(block_indices, block_embeds):
            if not allow_overwrite and int(idx) in self.block_data:
                raise ValueError("Attempted to overwrite a read-only HashedIndex")
            self.block_data[int(idx)] = embed

    def save_shard(self, rank):
        dir_name = 'block_hash_data'
        if not os.path.isdir(dir_name):
            os.mkdir(dir_name)

        # save the data for each shard
        with open('{}/{}.pkl'.format(dir_name, rank), 'wb') as data_file:
            pickle.dump(self.state(), data_file)

    def consolidate_shards_and_save(self):
        """Combine all the shards made using self.save_shard()"""
        dir_name = 'block_hash_data'
        fnames = os.listdir(dir_name)
        for fname in fnames:
            with open('{}/{}'.format(dir_name, fname), 'rb') as f:
                data = pickle.load(f)
                assert data['hash_matrix'] == self.hash_matrix

                old_size = len(self.block_data)
                shard_size = len(data['block_data'])
                self.block_data.update(data['block_data'])
                assert len(self.block_data) == old_size + shard_size

                for bucket, items in data['hash_data'].items():
                    self.hash_data[bucket].extend(items)

        with open('block_hash_data.pkl', 'wb') as final_file:
            pickle.dump(self.state(), final_file)
        shutil.rmtree(dir_name, ignore_errors=True)

    def clear(self):
        """Clear the data structures to save memory"""
        self.block_data = defaultdict(list)
        self.hash_data = defaultdict(list)


def main():

    # TODO
    # consider broadcasting/all-reducing all in memory rather than using the filesystem
    # create a different process group in the same nccl world - don't have to use chkpts on disc or transfer things on disc
    # torch distributed new group, constains a list of rank, gives back a group which I can hand to the collective operations
    # create a training process group, indexing process group
    # pass the training group to the distributed DDP, instead of the large world process group
    # use indexing process group for the shard-combining
    # communication group between process "8" and process "0" which tells training group that there's a new index
    # also, process 0 sends process 8 the new model

    # if i want to launch a separate process for indexing, may have to work with environment variables to
    # allocate the resources well. Have to subsequently assign the correct gpus to the indexing job
    # consider initializing everything in a single group and break off processes based on the ranks

Neel Kant's avatar
Neel Kant committed
118
119
120
121
122
123
124
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
    args = get_args()
    model = load_checkpoint()
    model.eval()
    dataset = get_dataset()
    data_iter = iter(get_dataloader(dataset))
Neel Kant's avatar
Neel Kant committed
125
    hashed_index = HashedIndex(embed_size=128, num_buckets=2048)
Neel Kant's avatar
Neel Kant committed
126

Neel Kant's avatar
Neel Kant committed
127
    i = 0
Neel Kant's avatar
Neel Kant committed
128
129
    while True:
        try:
Neel Kant's avatar
Neel Kant committed
130
131
            query_tokens, query_pad_mask, \
            block_tokens, block_pad_mask, block_indices = get_batch(data_iter)
132
        except:
Neel Kant's avatar
Neel Kant committed
133
            break
134

Neel Kant's avatar
Neel Kant committed
135
136
        actual_model = model.module.module
        block_indices = detach(block_indices)
Neel Kant's avatar
Neel Kant committed
137

Neel Kant's avatar
Neel Kant committed
138
139
140
        block_logits = actual_model.embed_block(block_tokens, block_pad_mask)
        hashed_index.hash_embeds(block_logits, block_indices)
        hashed_index.assign_block_embeds(block_indices, detach(block_logits))
Neel Kant's avatar
Neel Kant committed
141

Neel Kant's avatar
Neel Kant committed
142
143
        if i % 100 == 0:
            print(i, flush=True)
144
145
        i += 1

Neel Kant's avatar
Neel Kant committed
146
    hashed_index.save_shard(args.rank)
Neel Kant's avatar
Neel Kant committed
147
    torch.distributed.barrier()
148
149
    del model

Neel Kant's avatar
Neel Kant committed
150
    if mpu.get_data_parallel_rank() == 0:
Neel Kant's avatar
Neel Kant committed
151
152
153
        hashed_index.consolidate_shards_and_save()
    else:
        hashed_index.clear()
Neel Kant's avatar
Neel Kant committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183


def load_checkpoint():
    args = get_args()
    model = get_model(model_provider)

    if isinstance(model, torchDDP):
        model = model.module
    tracker_filename = get_checkpoint_tracker_filename(args.load)
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    assert iteration > 0
    checkpoint_name = get_checkpoint_name(args.load, iteration, False)
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
    model.load_state_dict(state_dict['model'])
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    return model


def get_dataset():
    args = get_args()
Neel Kant's avatar
Neel Kant committed
184
185
    block_dataset = get_indexed_dataset_(args.data_path, 'mmap', True)
    titles_dataset = get_indexed_dataset_(args.data_path + '-titles', 'mmap', True)
Neel Kant's avatar
Neel Kant committed
186
187
188

    kwargs = dict(
        name='full',
Neel Kant's avatar
Neel Kant committed
189
190
        block_dataset=block_dataset,
        title_dataset=titles_dataset,
Neel Kant's avatar
Neel Kant committed
191
        data_prefix=args.data_path,
Neel Kant's avatar
Neel Kant committed
192
193
        num_epochs=1,
        max_num_samples=None,
Neel Kant's avatar
Neel Kant committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        max_seq_length=288,  # doesn't matter
        short_seq_prob=0.0001,  # doesn't matter
        seed=1
    )
    dataset = InverseClozeDataset(**kwargs)
    return dataset


def get_dataloader(dataset):
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    global_batch_size = args.batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=True,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


if __name__ == "__main__":
Neel Kant's avatar
Neel Kant committed
224
    main()