hashed_index.py 14.8 KB
Newer Older
Neel Kant's avatar
Neel Kant committed
1
from collections import defaultdict
Neel Kant's avatar
Neel Kant committed
2
import os
Neel Kant's avatar
Neel Kant committed
3
import pickle
Neel Kant's avatar
Neel Kant committed
4
import shutil
Neel Kant's avatar
Neel Kant committed
5

Neel Kant's avatar
Neel Kant committed
6
7
8
9
10
11
12
13
14
15
16
import numpy as np
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

from megatron import get_args
from megatron import mpu
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
from megatron.data.bert_dataset import get_indexed_dataset_
from megatron.data.ict_dataset import InverseClozeDataset
from megatron.data.samplers import DistributedBatchSampler
from megatron.initialize import initialize_megatron
Neel Kant's avatar
Neel Kant committed
17
from megatron.model import REALMRetriever
Neel Kant's avatar
Neel Kant committed
18
19
20
21
from megatron.training import get_model
from pretrain_bert_ict import get_batch, model_provider


22
23
24
25
def detach(tensor):
    return tensor.detach().cpu().numpy()


Neel Kant's avatar
Neel Kant committed
26
27
class HashedIndex(object):
    """Class for holding hashed data"""
Neel Kant's avatar
Neel Kant committed
28
    def __init__(self, embed_size, num_buckets, whiten=False, seed=0):
Neel Kant's avatar
Neel Kant committed
29
30
31
        np.random.seed(seed)
        self.block_data = defaultdict(list)
        self.hash_data = defaultdict(list)
Neel Kant's avatar
Neel Kant committed
32
33
        hash_matrix = np.random.rand(embed_size, int(num_buckets / 2))
        self.hash_matrix = hash_matrix / np.linalg.norm(hash_matrix, axis=0).reshape(1, -1)
Neel Kant's avatar
Neel Kant committed
34
35
36
        self.embed_mean = None
        self.embed_whitener = None
        self.whiten = whiten
Neel Kant's avatar
Neel Kant committed
37
        self.m = 5
Neel Kant's avatar
Neel Kant committed
38
39
40
41
42

    def state(self):
        state = {
            'block_data': self.block_data,
            'hash_data': self.hash_data,
Neel Kant's avatar
Neel Kant committed
43
44
45
            'hash_matrix': self.hash_matrix,
            'embed_mean': self.embed_mean,
            'embed_whitener': self.embed_whitener,
Neel Kant's avatar
Neel Kant committed
46
47
48
49
50
51
52
53
54
55
56
        }
        return state

    def get_block_bucket(self, hash):
        return self.hash_data[hash]

    def get_block_embed(self, block_idx):
        return self.block_data[block_idx]

    def hash_embeds(self, embeds, block_data=None):
        """Hash a tensor of embeddings using a random projection matrix"""
Neel Kant's avatar
Neel Kant committed
57
        embed_scores_pos = torch.matmul(embeds, torch.cuda.FloatTensor(self.hash_matrix))
Neel Kant's avatar
Neel Kant committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
        embed_scores = torch.cat((embed_scores_pos, -embed_scores_pos), axis=1)
        embed_hashes = detach(torch.argmax(embed_scores, axis=1))

        if block_data is not None:
            for hash, indices in zip(embed_hashes, block_data):
                self.hash_data[hash].append(indices)

        return embed_hashes

    def assign_block_embeds(self, block_indices, block_embeds, allow_overwrite=False):
        """Assign the embeddings for each block index into a hash map"""
        for idx, embed in zip(block_indices, block_embeds):
            if not allow_overwrite and int(idx) in self.block_data:
                raise ValueError("Attempted to overwrite a read-only HashedIndex")
Neel Kant's avatar
Neel Kant committed
72
            self.block_data[int(idx)] = np.float16(embed)
Neel Kant's avatar
Neel Kant committed
73
74
75
76
77
78
79
80
81
82

    def save_shard(self, rank):
        dir_name = 'block_hash_data'
        if not os.path.isdir(dir_name):
            os.mkdir(dir_name)

        # save the data for each shard
        with open('{}/{}.pkl'.format(dir_name, rank), 'wb') as data_file:
            pickle.dump(self.state(), data_file)

Neel Kant's avatar
Neel Kant committed
83
    def consolidate_shards_and_save(self, ignore_shard=0):
Neel Kant's avatar
Neel Kant committed
84
85
86
87
88
89
        """Combine all the shards made using self.save_shard()"""
        dir_name = 'block_hash_data'
        fnames = os.listdir(dir_name)
        for fname in fnames:
            with open('{}/{}'.format(dir_name, fname), 'rb') as f:
                data = pickle.load(f)
Neel Kant's avatar
Neel Kant committed
90
                assert np.array_equal(data['hash_matrix'], self.hash_matrix)
Neel Kant's avatar
Neel Kant committed
91
92
93
94

                old_size = len(self.block_data)
                shard_size = len(data['block_data'])
                self.block_data.update(data['block_data'])
Neel Kant's avatar
Neel Kant committed
95
                assert (len(self.block_data) == old_size + shard_size) or (str(ignore_shard) in fname)
Neel Kant's avatar
Neel Kant committed
96

Neel Kant's avatar
Neel Kant committed
97
98
99
100
101
102
                if not self.whiten:
                    for bucket, items in data['hash_data'].items():
                        self.hash_data[bucket].extend(items)

        if self.whiten:
            self.whiten_block_embeds()
Neel Kant's avatar
Neel Kant committed
103

Neel Kant's avatar
Neel Kant committed
104
105
        args = get_args()
        with open(args.hash_data_path, 'wb') as final_file:
Neel Kant's avatar
Neel Kant committed
106
107
108
109
110
            pickle.dump(self.state(), final_file)
        shutil.rmtree(dir_name, ignore_errors=True)

    def clear(self):
        """Clear the data structures to save memory"""
Neel Kant's avatar
Neel Kant committed
111
112
113
114
115
116
117
118
119
120
121
122
123
        self.block_data = dict()
        self.hash_data = defaultdict(list)

    def whiten_block_embeds(self):
        """Transform all block embeds to have zero mean and unit covariance
        when treated as samples from a distribution"""
        block_idx, all_embeds = zip(*self.block_data.items())
        arr_embeds = np.transpose(np.array(all_embeds))

        mean = np.mean(arr_embeds, axis=1).reshape(-1, 1)
        centered = arr_embeds - mean
        inv_cov = np.linalg.inv(np.cov(arr_embeds))
        whitener = np.transpose(np.linalg.cholesky(inv_cov))
Neel Kant's avatar
Neel Kant committed
124
        whitened = np.float16(np.transpose(whitener.dot(centered)))
Neel Kant's avatar
Neel Kant committed
125
126
127
128

        self.embed_mean = mean.reshape(-1)
        self.embed_whitener = whitener
        self.block_data = dict(zip(block_idx, list(whitened)))
Neel Kant's avatar
Neel Kant committed
129
        self.hash_data = defaultdict(list)
Neel Kant's avatar
Neel Kant committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        batch_size = 16384
        i = 0

        with torch.no_grad():
            hashing_tensor = torch.cuda.HalfTensor(self.hash_matrix)
            while True:
                batch_slice = slice(i * batch_size, (i + 1) * batch_size)
                batch_embed = torch.cuda.HalfTensor(whitened[batch_slice])
                batch_block_idx = block_idx[batch_slice]
                if batch_embed.size == 0:
                    break

                hash_scores_pos = torch.matmul(batch_embed, hashing_tensor)
                embed_scores = torch.cat((hash_scores_pos, -hash_scores_pos), axis=1)
                embed_hashes = detach(torch.argmax(embed_scores, axis=1))
                for hash, embed in zip(list(embed_hashes), list(detach(batch_embed))):
                    # [int] instead of [array<int>] since this is just for analysis rn
                    self.hash_data[hash].append(batch_block_idx)
Neel Kant's avatar
Neel Kant committed
148

Neel Kant's avatar
Neel Kant committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    def create_block_data_index(self):
        import faiss
        self.block_idx, block_embeds = zip(*self.block_data.items())
        block_embeds = np.array(block_embeds)

        index = faiss.IndexFlatL2(block_embeds.shape[1])
        index.add(block_embeds)
        print('Total blocks in index: ', index.ntotal)
        self.block_index = index

    def exact_mips_equals(self, query_embeds):
        """For each query, determine whether the mips block is in the correct hash bucket"""
        _, block_embeds = zip(*self.block_data.items())
        with torch.no_grad():
            # get hashes for the queries
            hash_scores_pos = torch.matmul(torch.cuda.HalfTensor(query_embeds), torch.cuda.HalfTensor(self.hash_matrix))
            hash_scores = torch.cat((hash_scores_pos, -hash_scores_pos), axis=1)
            query_hashes = detach(torch.argmax(hash_scores, axis=1))

            # [num_query x num_blocks]
            inner_products = torch.matmul(torch.cuda.HalfTensor(query_embeds),
                                          torch.cuda.HalfTensor(np.transpose(np.array(block_embeds))))
            max_inner_product_idxes = detach(torch.argmax(inner_products, axis=1))
            best_blocks = [self.block_data[idx] for idx in max_inner_product_idxes]
            best_blocks_tensor = torch.cuda.HalfTensor(np.array(best_blocks))
            # bb = best_blocks
            bb_hash_scores_pos = torch.matmul(torch.cuda.HalfTensor(best_blocks_tensor), torch.cuda.HalfTensor(self.hash_matrix))
            bb_hash_scores = torch.cat((bb_hash_scores_pos, -bb_hash_scores_pos), axis=1)
            best_block_hashes = detach(torch.argmax(bb_hash_scores, axis=1))
            equal_arr = np.equal(query_hashes, best_block_hashes).astype(int)

            # array of zeros and ones which can be used for counting success
            return equal_arr

    def exact_mips_test(self, whitened):
        if whitened:
            if self.embed_mean is None:
                self.whiten_block_embeds()
            query_embeds = np.random.multivariate_normal(np.zeros(128), np.eye(128), 256)
        else:
            block_idx, all_embeds = zip(*self.block_data.items())
            arr_embeds = np.transpose(np.array(all_embeds))

            mean = np.mean(arr_embeds, axis=1).reshape(-1, 1)
            cov = np.cov(arr_embeds)
            query_embeds = np.random.multivariate_normal(mean, cov, 256)

        equal_arr = self.exact_mips_equals(query_embeds)
        print("Num correct: ", sum(equal_arr), " Fraction correct: ", sum(equal_arr) / equal_arr.size)

Neel Kant's avatar
Neel Kant committed
199
200
    @classmethod
    def load_from_file(cls, fname):
Neel Kant's avatar
Neel Kant committed
201
        print(" > Unpickling block hash data")
Neel Kant's avatar
Neel Kant committed
202
        state_dict = pickle.load(open(fname, 'rb'))
Neel Kant's avatar
Neel Kant committed
203
        print(" > Finished unpickling")
Neel Kant's avatar
Neel Kant committed
204
205
206
207
208
209
        hash_matrix = state_dict['hash_matrix']

        new_index = HashedIndex(hash_matrix.shape[0], hash_matrix.shape[1] * 2)
        new_index.block_data = state_dict['block_data']
        new_index.hash_data = state_dict['hash_data']
        new_index.hash_matrix = hash_matrix
Neel Kant's avatar
Neel Kant committed
210

Neel Kant's avatar
Neel Kant committed
211
212
        return new_index

Neel Kant's avatar
Neel Kant committed
213

Neel Kant's avatar
Neel Kant committed
214
215
216
def test_retriever():
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
Neel Kant's avatar
Neel Kant committed
217
    args = get_args()
Neel Kant's avatar
Neel Kant committed
218
    model = load_ict_checkpoint(only_block_model=True)
Neel Kant's avatar
Neel Kant committed
219
    model.eval()
Neel Kant's avatar
Neel Kant committed
220
    dataset = get_ict_dataset()
Neel Kant's avatar
Neel Kant committed
221
    hashed_index = HashedIndex.load_from_file(args.hash_data_path)
Neel Kant's avatar
Neel Kant committed
222
    retriever = REALMRetriever(model, dataset, hashed_index)
Neel Kant's avatar
Neel Kant committed
223
224
225
226
227
228
229
230
231
232

    strs = [
        "The last monarch from the house of windsor",
        "married to Elvis Presley",
        "tallest building in the world today",
        "who makes graphics cards"
    ]

    for s in strs:
        retriever.retrieve_evidence_blocks_text(s)
Neel Kant's avatar
Neel Kant committed
233
234


Neel Kant's avatar
Neel Kant committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
def main():

    # TODO
    # consider broadcasting/all-reducing all in memory rather than using the filesystem
    # create a different process group in the same nccl world - don't have to use chkpts on disc or transfer things on disc
    # torch distributed new group, constains a list of rank, gives back a group which I can hand to the collective operations
    # create a training process group, indexing process group
    # pass the training group to the distributed DDP, instead of the large world process group
    # use indexing process group for the shard-combining
    # communication group between process "8" and process "0" which tells training group that there's a new index
    # also, process 0 sends process 8 the new model

    # if i want to launch a separate process for indexing, may have to work with environment variables to
    # allocate the resources well. Have to subsequently assign the correct gpus to the indexing job
    # consider initializing everything in a single group and break off processes based on the ranks

Neel Kant's avatar
Neel Kant committed
251
252
253
    # for debugging purposes, make it so that the training process group checks every some number of intervals
    # and if it isn't ready, then wait so that it's consistent. Start with using the filesystem

Neel Kant's avatar
Neel Kant committed
254
255
256
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
    args = get_args()
Neel Kant's avatar
Neel Kant committed
257
    model = load_ict_checkpoint(only_block_model=True, no_grad=True)
Neel Kant's avatar
Neel Kant committed
258
    model.eval()
Neel Kant's avatar
Neel Kant committed
259
    dataset = get_ict_dataset()
Neel Kant's avatar
Neel Kant committed
260
261
    data_iter = iter(get_one_epoch_dataloader(dataset))
    hashed_index = HashedIndex(embed_size=128, num_buckets=4096, whiten=True)
Neel Kant's avatar
Neel Kant committed
262

Neel Kant's avatar
Neel Kant committed
263
264
265
    i = 1
    total = 0
    whiten = False
Neel Kant's avatar
Neel Kant committed
266
267
    while True:
        try:
Neel Kant's avatar
Neel Kant committed
268
269
            query_tokens, query_pad_mask, \
            block_tokens, block_pad_mask, block_indices = get_batch(data_iter)
270
        except:
Neel Kant's avatar
Neel Kant committed
271
            break
272

Neel Kant's avatar
Neel Kant committed
273
        block_indices = detach(block_indices)
Neel Kant's avatar
Neel Kant committed
274
        block_logits = model(None, None, block_tokens, block_pad_mask, only_block=True)
Neel Kant's avatar
Neel Kant committed
275

Neel Kant's avatar
Neel Kant committed
276
        # If whitened, then hashing needs to be done after whitening the block embeds
Neel Kant's avatar
Neel Kant committed
277
278
279
280
281
282
        # which is done in consolidate_shards_and_save()
        if not whiten:
            hashed_index.hash_embeds(block_logits, block_indices)
        hashed_index.assign_block_embeds(block_indices[:, 3], detach(block_logits))

        total += block_indices.size
283
        i += 1
Neel Kant's avatar
Neel Kant committed
284
285
286
287
        if i % 20 == 0:
            print('Batch {:10d} | Total {:10d}'.format(i, total), flush=True)
            if args.debug:
                break
288

Neel Kant's avatar
Neel Kant committed
289
    hashed_index.save_shard(args.rank)
Neel Kant's avatar
Neel Kant committed
290
    torch.distributed.barrier()
291
292
    del model

Neel Kant's avatar
Neel Kant committed
293
    if args.rank == 0:
Neel Kant's avatar
Neel Kant committed
294
295
296
        hashed_index.consolidate_shards_and_save()
    else:
        hashed_index.clear()
Neel Kant's avatar
Neel Kant committed
297
298


Neel Kant's avatar
Neel Kant committed
299
def load_ict_checkpoint(only_query_model=False, only_block_model=False, no_grad=False):
Neel Kant's avatar
Neel Kant committed
300
    args = get_args()
Neel Kant's avatar
Neel Kant committed
301
    model = get_model(lambda: model_provider(only_query_model, only_block_model))
Neel Kant's avatar
Neel Kant committed
302
303
304

    if isinstance(model, torchDDP):
        model = model.module
Neel Kant's avatar
Neel Kant committed
305
    tracker_filename = get_checkpoint_tracker_filename(args.ict_load)
Neel Kant's avatar
Neel Kant committed
306
307
308
309
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    assert iteration > 0
Neel Kant's avatar
Neel Kant committed
310
    checkpoint_name = get_checkpoint_name(args.ict_load, iteration, False)
Neel Kant's avatar
Neel Kant committed
311
312
313
314
315
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
Neel Kant's avatar
Neel Kant committed
316
317
318
319
320
321
322
323
324
    if only_query_model:
        state_dict['model'].pop('context_model')
    if only_block_model:
        state_dict['model'].pop('question_model')
    if no_grad:
        with torch.no_grad():
            model.load_state_dict(state_dict['model'])
    else:
        model.load_state_dict(state_dict['model'])
Neel Kant's avatar
Neel Kant committed
325
326
327
328
329
330
331
332
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    return model


Neel Kant's avatar
Neel Kant committed
333
def get_ict_dataset():
Neel Kant's avatar
Neel Kant committed
334
    args = get_args()
Neel Kant's avatar
Neel Kant committed
335
    block_dataset = get_indexed_dataset_(args.data_path, 'mmap', True)
Neel Kant's avatar
Neel Kant committed
336
    titles_dataset = get_indexed_dataset_(args.titles_data_path, 'mmap', True)
Neel Kant's avatar
Neel Kant committed
337
338
339

    kwargs = dict(
        name='full',
Neel Kant's avatar
Neel Kant committed
340
341
        block_dataset=block_dataset,
        title_dataset=titles_dataset,
Neel Kant's avatar
Neel Kant committed
342
        data_prefix=args.data_path,
Neel Kant's avatar
Neel Kant committed
343
344
        num_epochs=1,
        max_num_samples=None,
Neel Kant's avatar
Neel Kant committed
345
346
347
348
349
350
351
352
        max_seq_length=288,  # doesn't matter
        short_seq_prob=0.0001,  # doesn't matter
        seed=1
    )
    dataset = InverseClozeDataset(**kwargs)
    return dataset


Neel Kant's avatar
Neel Kant committed
353
def get_one_epoch_dataloader(dataset):
Neel Kant's avatar
Neel Kant committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    global_batch_size = args.batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=True,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


if __name__ == "__main__":
Neel Kant's avatar
Neel Kant committed
375
    main()