hashed_index.py 12.7 KB
Newer Older
Neel Kant's avatar
Neel Kant committed
1
from collections import defaultdict
Neel Kant's avatar
Neel Kant committed
2
import os
Neel Kant's avatar
Neel Kant committed
3
import pickle
Neel Kant's avatar
Neel Kant committed
4
import shutil
Neel Kant's avatar
Neel Kant committed
5

Neel Kant's avatar
Neel Kant committed
6
7
8
9
10
11
12
13
14
15
16
import numpy as np
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

from megatron import get_args
from megatron import mpu
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
from megatron.data.bert_dataset import get_indexed_dataset_
from megatron.data.ict_dataset import InverseClozeDataset
from megatron.data.samplers import DistributedBatchSampler
from megatron.initialize import initialize_megatron
Neel Kant's avatar
Neel Kant committed
17
from megatron.model import REALMRetriever
Neel Kant's avatar
Neel Kant committed
18
19
20
21
from megatron.training import get_model
from pretrain_bert_ict import get_batch, model_provider


22
23
24
25
def detach(tensor):
    return tensor.detach().cpu().numpy()


Neel Kant's avatar
Neel Kant committed
26
27
class HashedIndex(object):
    """Class for holding hashed data"""
Neel Kant's avatar
Neel Kant committed
28
    def __init__(self, embed_size, num_buckets, whiten=False, seed=0):
Neel Kant's avatar
Neel Kant committed
29
30
31
        np.random.seed(seed)
        self.block_data = defaultdict(list)
        self.hash_data = defaultdict(list)
Neel Kant's avatar
Neel Kant committed
32
33
        hash_matrix = np.random.rand(embed_size, int(num_buckets / 2))
        self.hash_matrix = hash_matrix / np.linalg.norm(hash_matrix, axis=0).reshape(1, -1)
Neel Kant's avatar
Neel Kant committed
34
35
36
        self.embed_mean = None
        self.embed_whitener = None
        self.whiten = whiten
Neel Kant's avatar
Neel Kant committed
37
38
39
40
41

    def state(self):
        state = {
            'block_data': self.block_data,
            'hash_data': self.hash_data,
Neel Kant's avatar
Neel Kant committed
42
43
44
            'hash_matrix': self.hash_matrix,
            'embed_mean': self.embed_mean,
            'embed_whitener': self.embed_whitener,
Neel Kant's avatar
Neel Kant committed
45
46
47
48
49
50
51
52
53
54
55
        }
        return state

    def get_block_bucket(self, hash):
        return self.hash_data[hash]

    def get_block_embed(self, block_idx):
        return self.block_data[block_idx]

    def hash_embeds(self, embeds, block_data=None):
        """Hash a tensor of embeddings using a random projection matrix"""
Neel Kant's avatar
Neel Kant committed
56
        embed_scores_pos = torch.matmul(embeds, torch.cuda.FloatTensor(self.hash_matrix))
Neel Kant's avatar
Neel Kant committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        embed_scores = torch.cat((embed_scores_pos, -embed_scores_pos), axis=1)
        embed_hashes = detach(torch.argmax(embed_scores, axis=1))

        if block_data is not None:
            for hash, indices in zip(embed_hashes, block_data):
                self.hash_data[hash].append(indices)

        return embed_hashes

    def assign_block_embeds(self, block_indices, block_embeds, allow_overwrite=False):
        """Assign the embeddings for each block index into a hash map"""
        for idx, embed in zip(block_indices, block_embeds):
            if not allow_overwrite and int(idx) in self.block_data:
                raise ValueError("Attempted to overwrite a read-only HashedIndex")
Neel Kant's avatar
Neel Kant committed
71
            self.block_data[int(idx)] = np.float16(embed)
Neel Kant's avatar
Neel Kant committed
72
73
74
75
76
77
78
79
80
81

    def save_shard(self, rank):
        dir_name = 'block_hash_data'
        if not os.path.isdir(dir_name):
            os.mkdir(dir_name)

        # save the data for each shard
        with open('{}/{}.pkl'.format(dir_name, rank), 'wb') as data_file:
            pickle.dump(self.state(), data_file)

Neel Kant's avatar
Neel Kant committed
82
    def consolidate_shards_and_save(self, ignore_shard=0):
Neel Kant's avatar
Neel Kant committed
83
84
85
86
87
88
        """Combine all the shards made using self.save_shard()"""
        dir_name = 'block_hash_data'
        fnames = os.listdir(dir_name)
        for fname in fnames:
            with open('{}/{}'.format(dir_name, fname), 'rb') as f:
                data = pickle.load(f)
Neel Kant's avatar
Neel Kant committed
89
                assert np.array_equal(data['hash_matrix'], self.hash_matrix)
Neel Kant's avatar
Neel Kant committed
90
91
92
93

                old_size = len(self.block_data)
                shard_size = len(data['block_data'])
                self.block_data.update(data['block_data'])
Neel Kant's avatar
Neel Kant committed
94
                assert (len(self.block_data) == old_size + shard_size) or (str(ignore_shard) in fname)
Neel Kant's avatar
Neel Kant committed
95

Neel Kant's avatar
Neel Kant committed
96
97
98
99
100
101
                if not self.whiten:
                    for bucket, items in data['hash_data'].items():
                        self.hash_data[bucket].extend(items)

        if self.whiten:
            self.whiten_block_embeds()
Neel Kant's avatar
Neel Kant committed
102

Neel Kant's avatar
Neel Kant committed
103
104
        args = get_args()
        with open(args.hash_data_path, 'wb') as final_file:
Neel Kant's avatar
Neel Kant committed
105
106
107
108
109
            pickle.dump(self.state(), final_file)
        shutil.rmtree(dir_name, ignore_errors=True)

    def clear(self):
        """Clear the data structures to save memory"""
Neel Kant's avatar
Neel Kant committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        self.block_data = dict()
        self.hash_data = defaultdict(list)

    def whiten_block_embeds(self):
        """Transform all block embeds to have zero mean and unit covariance
        when treated as samples from a distribution"""
        block_idx, all_embeds = zip(*self.block_data.items())
        arr_embeds = np.transpose(np.array(all_embeds))

        mean = np.mean(arr_embeds, axis=1).reshape(-1, 1)
        centered = arr_embeds - mean
        inv_cov = np.linalg.inv(np.cov(arr_embeds))
        whitener = np.transpose(np.linalg.cholesky(inv_cov))
        whitened = np.transpose(whitener.dot(centered))

        self.embed_mean = mean.reshape(-1)
        self.embed_whitener = whitener
        self.block_data = dict(zip(block_idx, list(whitened)))
Neel Kant's avatar
Neel Kant committed
128
        self.hash_data = defaultdict(list)
Neel Kant's avatar
Neel Kant committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        batch_size = 16384
        i = 0

        with torch.no_grad():
            hashing_tensor = torch.cuda.HalfTensor(self.hash_matrix)
            while True:
                batch_slice = slice(i * batch_size, (i + 1) * batch_size)
                batch_embed = torch.cuda.HalfTensor(whitened[batch_slice])
                batch_block_idx = block_idx[batch_slice]
                if batch_embed.size == 0:
                    break

                hash_scores_pos = torch.matmul(batch_embed, hashing_tensor)
                embed_scores = torch.cat((hash_scores_pos, -hash_scores_pos), axis=1)
                embed_hashes = detach(torch.argmax(embed_scores, axis=1))
                for hash, embed in zip(list(embed_hashes), list(detach(batch_embed))):
                    # [int] instead of [array<int>] since this is just for analysis rn
                    self.hash_data[hash].append(batch_block_idx)
Neel Kant's avatar
Neel Kant committed
147

Neel Kant's avatar
Neel Kant committed
148
149
    @classmethod
    def load_from_file(cls, fname):
Neel Kant's avatar
Neel Kant committed
150
        print(" > Unpickling block hash data")
Neel Kant's avatar
Neel Kant committed
151
        state_dict = pickle.load(open(fname, 'rb'))
Neel Kant's avatar
Neel Kant committed
152
        print(" > Finished unpickling")
Neel Kant's avatar
Neel Kant committed
153
154
155
156
157
158
        hash_matrix = state_dict['hash_matrix']

        new_index = HashedIndex(hash_matrix.shape[0], hash_matrix.shape[1] * 2)
        new_index.block_data = state_dict['block_data']
        new_index.hash_data = state_dict['hash_data']
        new_index.hash_matrix = hash_matrix
Neel Kant's avatar
Neel Kant committed
159

Neel Kant's avatar
Neel Kant committed
160
161
        return new_index

Neel Kant's avatar
Neel Kant committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    @classmethod
    def whiten_and_rehash(cls, fname):
        """Load up a HashedIndex, whiten it and rehash"""
        index = cls.load_from_file(fname)
        all_vectors = []
        for block_embed in index.block_data.values():
            all_vectors.append(block_embed)
        arr_vectors = np.transpose(np.array(all_vectors))
        mean = np.mean(arr_vectors, axis=1)
        cov = np.cov(arr_vectors)
        inv_cov = np.linalg.inv(cov)






Neel Kant's avatar
Neel Kant committed
179

Neel Kant's avatar
Neel Kant committed
180
181
182
def test_retriever():
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
Neel Kant's avatar
Neel Kant committed
183
    args = get_args()
Neel Kant's avatar
Neel Kant committed
184
    model = load_ict_checkpoint(only_block_model=True)
Neel Kant's avatar
Neel Kant committed
185
    model.eval()
Neel Kant's avatar
Neel Kant committed
186
    dataset = get_ict_dataset()
Neel Kant's avatar
Neel Kant committed
187
    hashed_index = HashedIndex.load_from_file(args.hash_data_path)
Neel Kant's avatar
Neel Kant committed
188
    retriever = REALMRetriever(model, dataset, hashed_index)
Neel Kant's avatar
Neel Kant committed
189
190
191
192
193
194
195
196
197
198

    strs = [
        "The last monarch from the house of windsor",
        "married to Elvis Presley",
        "tallest building in the world today",
        "who makes graphics cards"
    ]

    for s in strs:
        retriever.retrieve_evidence_blocks_text(s)
Neel Kant's avatar
Neel Kant committed
199
200


Neel Kant's avatar
Neel Kant committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
def main():

    # TODO
    # consider broadcasting/all-reducing all in memory rather than using the filesystem
    # create a different process group in the same nccl world - don't have to use chkpts on disc or transfer things on disc
    # torch distributed new group, constains a list of rank, gives back a group which I can hand to the collective operations
    # create a training process group, indexing process group
    # pass the training group to the distributed DDP, instead of the large world process group
    # use indexing process group for the shard-combining
    # communication group between process "8" and process "0" which tells training group that there's a new index
    # also, process 0 sends process 8 the new model

    # if i want to launch a separate process for indexing, may have to work with environment variables to
    # allocate the resources well. Have to subsequently assign the correct gpus to the indexing job
    # consider initializing everything in a single group and break off processes based on the ranks

Neel Kant's avatar
Neel Kant committed
217
218
219
    # for debugging purposes, make it so that the training process group checks every some number of intervals
    # and if it isn't ready, then wait so that it's consistent. Start with using the filesystem

Neel Kant's avatar
Neel Kant committed
220
221
222
    initialize_megatron(extra_args_provider=None,
                        args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
    args = get_args()
Neel Kant's avatar
Neel Kant committed
223
    model = load_ict_checkpoint(only_block_model=True, no_grad=True)
Neel Kant's avatar
Neel Kant committed
224
    model.eval()
Neel Kant's avatar
Neel Kant committed
225
    dataset = get_ict_dataset()
Neel Kant's avatar
Neel Kant committed
226
227
    data_iter = iter(get_one_epoch_dataloader(dataset))
    hashed_index = HashedIndex(embed_size=128, num_buckets=4096, whiten=True)
Neel Kant's avatar
Neel Kant committed
228

Neel Kant's avatar
Neel Kant committed
229
230
231
    i = 1
    total = 0
    whiten = False
Neel Kant's avatar
Neel Kant committed
232
233
    while True:
        try:
Neel Kant's avatar
Neel Kant committed
234
235
            query_tokens, query_pad_mask, \
            block_tokens, block_pad_mask, block_indices = get_batch(data_iter)
236
        except:
Neel Kant's avatar
Neel Kant committed
237
            break
238

Neel Kant's avatar
Neel Kant committed
239
        block_indices = detach(block_indices)
Neel Kant's avatar
Neel Kant committed
240
        block_logits = model(None, None, block_tokens, block_pad_mask, only_block=True)
Neel Kant's avatar
Neel Kant committed
241

Neel Kant's avatar
Neel Kant committed
242
243
244
245
246
247
248
        # If whiten, then hashing needs to be done after whitening the block embeds
        # which is done in consolidate_shards_and_save()
        if not whiten:
            hashed_index.hash_embeds(block_logits, block_indices)
        hashed_index.assign_block_embeds(block_indices[:, 3], detach(block_logits))

        total += block_indices.size
249
        i += 1
Neel Kant's avatar
Neel Kant committed
250
251
252
253
        if i % 20 == 0:
            print('Batch {:10d} | Total {:10d}'.format(i, total), flush=True)
            if args.debug:
                break
254

Neel Kant's avatar
Neel Kant committed
255
    hashed_index.save_shard(args.rank)
Neel Kant's avatar
Neel Kant committed
256
    torch.distributed.barrier()
257
258
    del model

Neel Kant's avatar
Neel Kant committed
259
    if args.rank == 0:
Neel Kant's avatar
Neel Kant committed
260
261
262
        hashed_index.consolidate_shards_and_save()
    else:
        hashed_index.clear()
Neel Kant's avatar
Neel Kant committed
263
264


Neel Kant's avatar
Neel Kant committed
265
def load_ict_checkpoint(only_query_model=False, only_block_model=False, no_grad=False):
Neel Kant's avatar
Neel Kant committed
266
    args = get_args()
Neel Kant's avatar
Neel Kant committed
267
    model = get_model(lambda: model_provider(only_query_model, only_block_model))
Neel Kant's avatar
Neel Kant committed
268
269
270

    if isinstance(model, torchDDP):
        model = model.module
Neel Kant's avatar
Neel Kant committed
271
    tracker_filename = get_checkpoint_tracker_filename(args.ict_load)
Neel Kant's avatar
Neel Kant committed
272
273
274
275
    with open(tracker_filename, 'r') as f:
        iteration = int(f.read().strip())

    assert iteration > 0
Neel Kant's avatar
Neel Kant committed
276
    checkpoint_name = get_checkpoint_name(args.ict_load, iteration, False)
Neel Kant's avatar
Neel Kant committed
277
278
279
280
281
    if mpu.get_data_parallel_rank() == 0:
        print('global rank {} is loading checkpoint {}'.format(
            torch.distributed.get_rank(), checkpoint_name))

    state_dict = torch.load(checkpoint_name, map_location='cpu')
Neel Kant's avatar
Neel Kant committed
282
283
284
285
286
287
288
289
290
    if only_query_model:
        state_dict['model'].pop('context_model')
    if only_block_model:
        state_dict['model'].pop('question_model')
    if no_grad:
        with torch.no_grad():
            model.load_state_dict(state_dict['model'])
    else:
        model.load_state_dict(state_dict['model'])
Neel Kant's avatar
Neel Kant committed
291
292
293
294
295
296
297
298
    torch.distributed.barrier()

    if mpu.get_data_parallel_rank() == 0:
        print(' successfully loaded {}'.format(checkpoint_name))

    return model


Neel Kant's avatar
Neel Kant committed
299
def get_ict_dataset():
Neel Kant's avatar
Neel Kant committed
300
    args = get_args()
Neel Kant's avatar
Neel Kant committed
301
    block_dataset = get_indexed_dataset_(args.data_path, 'mmap', True)
Neel Kant's avatar
Neel Kant committed
302
    titles_dataset = get_indexed_dataset_(args.titles_data_path, 'mmap', True)
Neel Kant's avatar
Neel Kant committed
303
304
305

    kwargs = dict(
        name='full',
Neel Kant's avatar
Neel Kant committed
306
307
        block_dataset=block_dataset,
        title_dataset=titles_dataset,
Neel Kant's avatar
Neel Kant committed
308
        data_prefix=args.data_path,
Neel Kant's avatar
Neel Kant committed
309
310
        num_epochs=1,
        max_num_samples=None,
Neel Kant's avatar
Neel Kant committed
311
312
313
314
315
316
317
318
        max_seq_length=288,  # doesn't matter
        short_seq_prob=0.0001,  # doesn't matter
        seed=1
    )
    dataset = InverseClozeDataset(**kwargs)
    return dataset


Neel Kant's avatar
Neel Kant committed
319
def get_one_epoch_dataloader(dataset):
Neel Kant's avatar
Neel Kant committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    global_batch_size = args.batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=True,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


if __name__ == "__main__":
Neel Kant's avatar
Neel Kant committed
341
    main()