transformer.py 23 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""

import math
import torch
20
import torch.nn.functional as F
21

Mohammad's avatar
Mohammad committed
22
from megatron import get_args
23
from megatron import mpu
24
from megatron.mpu import LayerNorm
25
from megatron.module import MegatronModule
Vijay Korthikanti's avatar
Vijay Korthikanti committed
26
from megatron.checkpointing import get_checkpoint_version
27
28
29
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
from megatron.model.utils import openai_gelu, erf_gelu
30

31
32
33
34
35
# flags required to enable jit fusion kernels
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
36
37
38
39
40
41
42
43
44
45
46

""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
47
    Transformer takes input of size [s, b, h] and returns a
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
        attention_mask_func: a function that takes `unmaksed-attention-scores`
            with size [b, np, s, s] and an `attention-mask` and will apply
            the masking. The function should return a masked score of the
            same size [b, np, s, s].
               masked-attention-scores = attention_mask_func(
                                     unmaksed-attention-scores, attention-mask)
"""

class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
    state back into h hidden dimension. At the end, dropout is also
    applied.
    """

67
    def __init__(self, init_method, output_layer_init_method):
68
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
69
        args = get_args()
70
71
72

        # Project to 4h.
        self.dense_h_to_4h = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
73
            args.hidden_size,
Neel Kant's avatar
Neel Kant committed
74
            4 * args.hidden_size,
75
            gather_output=False,
76
77
            init_method=init_method,
            skip_bias_add=True)
78

79
80
81
82
83
84
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
85
86
87

        # Project back to h.
        self.dense_4h_to_h = mpu.RowParallelLinear(
Neel Kant's avatar
Neel Kant committed
88
            4 * args.hidden_size,
Mohammad's avatar
Mohammad committed
89
            args.hidden_size,
90
            input_is_parallel=True,
91
92
93
            init_method=output_layer_init_method,
            skip_bias_add=True)
         
94
95
96

    def forward(self, hidden_states):

97
98
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
99

100
101
102
103
104
105
106
107
108
109
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
110
111
112
113
114
115
116
117


class ParallelSelfAttention(MegatronModule):
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [b, s, h]
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
118

Mohammad's avatar
Mohammad committed
119
120
    def __init__(self, attention_mask_func, init_method,
                 output_layer_init_method, layer_number):
121
        super(ParallelSelfAttention, self).__init__()
Mohammad's avatar
Mohammad committed
122
        args = get_args()
Mohammad's avatar
Mohammad committed
123
        self.fp16 = args.fp16
124
125

        self.attention_mask_func = attention_mask_func
Mohammad's avatar
Mohammad committed
126
127
        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
128
129
130
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
131
132

        # Per attention head and per partition values.
133
        world_size = mpu.get_tensor_model_parallel_world_size()
Mohammad's avatar
Mohammad committed
134
135
        self.hidden_size_per_partition = mpu.divide(args.hidden_size,
                                                    world_size)
136
        self.hidden_size_per_attention_head = mpu.divide(
Mohammad's avatar
Mohammad committed
137
            args.hidden_size, args.num_attention_heads)
138
        self.num_attention_heads_per_partition = mpu.divide(
Mohammad's avatar
Mohammad committed
139
            args.num_attention_heads, world_size)
140
141
142

        # Strided linear layer.
        self.query_key_value = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
143
            args.hidden_size,
Neel Kant's avatar
Neel Kant committed
144
            3 * args.hidden_size,
145
            gather_output=False,
Mohammad's avatar
Mohammad committed
146
            init_method=init_method)
147

148
149
150
151
152
153
154
155
156
        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16,
            args.scaled_upper_triang_masked_softmax_fusion,
157
            args.scaled_masked_softmax_fusion,
158
159
160
161
            self.attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

162
163
164
        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
Mohammad's avatar
Mohammad committed
165
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
166
167
168

        # Output.
        self.dense = mpu.RowParallelLinear(
Mohammad's avatar
Mohammad committed
169
170
            args.hidden_size,
            args.hidden_size,
171
            input_is_parallel=True,
172
173
            init_method=output_layer_init_method,
            skip_bias_add=True)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
174

Vijay Korthikanti's avatar
Vijay Korthikanti committed
175
    def _transpose_last_dim(self, mixed_layer, num_splits, num_splits_first):
176
        input_shape = mixed_layer.size();
Vijay Korthikanti's avatar
Vijay Korthikanti committed
177
178
179
180
181
182
        if num_splits_first:
            """[s, b, num_splits * np * hn] 
            -->(view) [s, b, num_splits, np, hn] 
            -->(tranpose) [s, b, np, num_splits, hn] 
            -->(view) [s, b, np * num_splits * hn] """

183
184
185
            intermediate_shape = input_shape[:-1] +\
                (num_splits, self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
186

187
188
189
            mixed_layer = mixed_layer.view(*intermediate_shape)
            mixed_layer = mixed_layer.transpose(-2, -3).contiguous()
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
190
191
192
193
194
            """[s, b, np * hn * num_splits] 
            -->(view) [s, b, np, hn, num_splits] 
            -->(tranpose) [s, b, np, num_splits, hn] 
            -->(view) [s, b, np * num_splits * hn] """

195
196
197
198
199
200
            intermediate_shape = input_shape[:-1] +\
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head, num_splits)

            mixed_layer = mixed_layer.view(*intermediate_shape)
            mixed_layer = mixed_layer.transpose(-1, -2).contiguous()
201
202
203
        mixed_layer = mixed_layer.view(*input_shape)
        
        return mixed_layer
204

205
206
    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):
207
        # hidden_states: [sq, b, h]
208

209
210
211
        # =====================
        # Query, Key, and Value
        # =====================
212

Vijay Korthikanti's avatar
Vijay Korthikanti committed
213
        # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
214
        mixed_x_layer, _ = self.query_key_value(hidden_states)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
215

Vijay Korthikanti's avatar
Vijay Korthikanti committed
216
        checkpoint_version = get_checkpoint_version()
217
218
219
        if checkpoint_version is not None:
           if checkpoint_version == 0:
               # [s, b, (3 * np * hn)] --> [s, b, (np * 3 * hn)]
Vijay Korthikanti's avatar
Vijay Korthikanti committed
220
               mixed_x_layer = self._transpose_last_dim(mixed_x_layer, 3, True)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
221
           elif checkpoint_version == 1.0:
222
               # [s, b, (np * hn * 3)] --> [s, b, (np * 3 * hn)]
Vijay Korthikanti's avatar
Vijay Korthikanti committed
223
               mixed_x_layer = self._transpose_last_dim(mixed_x_layer, 3, False)
224

Vijay Korthikanti's avatar
Vijay Korthikanti committed
225
        # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
226
227
        new_tensor_shape = mixed_x_layer.size()[:-1] + \
            (self.num_attention_heads_per_partition,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
228
             3 * self.hidden_size_per_attention_head)
229
230
        mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
231
232
233
234
        # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
        (query_layer,
         key_layer,
         value_layer) = mpu.split_tensor_along_last_dim(mixed_x_layer, 3)
235

236
237
238
        # ==================================
        # Adjust key and value for inference
        # ==================================
239
240
241
242

        if layer_past is not None:
            past_key, past_value = layer_past
            key_layer = torch.cat((past_key.type_as(key_layer),
243
                                   key_layer), dim=0)
244
            value_layer = torch.cat((past_value.type_as(value_layer),
245
                                     value_layer), dim=0)
246
247
248
249
        if get_key_value:
            present = (key_layer, value_layer)


250
251
252
253
        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================
        
254
        # [b, np, sq, sk]
255
256
257
258
259
        output_size = (query_layer.size(1), 
                       query_layer.size(2), 
                       query_layer.size(0), 
                       key_layer.size(0))
        
260
        # [sq, b, np, hn] -> [sq, b * np, hn]
261
262
263
264
265
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

266
        # preallocting result tensor: [b * np, sq, sk]
267
268
269
270
271
272
273
        matmul_result = torch.empty(
            output_size[0]*output_size[1], 
            output_size[2], 
            output_size[3],
            dtype=query_layer.dtype, 
            device=torch.cuda.current_device())

274
        # Raw attention scores. [b * np, sq, sk]
275
        matmul_result = torch.baddbmm(matmul_result, 
276
277
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0,1).transpose(1, 2),  #[b * np, hn, sk]
278
279
            beta=0.0, alpha=(1.0/self.norm_factor))

280
        # change view to [b, np, sq, sk]
281
282
283
284
        attention_scores = matmul_result.view(*output_size)


        # ==================================================
285
        # Update attention mask for inference. [b, np, sq, sk]
286
        # ==================================================
287

288
289
290
291
292
        if get_key_value:
            with torch.no_grad():
                if layer_past is not None:
                    attention_mask = attention_mask[
                        ...,
Neel Kant's avatar
Neel Kant committed
293
                        attention_scores.size(3) - 1,
294
295
296
297
298
299
300
301
                        :attention_scores.size(3)].unsqueeze(2)
                else:
                    attention_mask = attention_mask[
                        ...,
                        :attention_scores.size(3),
                        :attention_scores.size(3)]


302
303
304
        # ===========================
        # Attention probs and dropout
        # ===========================
305

306
        # attention scores and attention mask [b, np, sq, sk]
307
308
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)
309

310
311
312
313
314
315
316
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        with mpu.get_cuda_rng_tracker().fork():
            attention_probs = self.attention_dropout(attention_probs)


        # =========================
317
        # Context layer. [sq, b, hp]
318
319
        # =========================

320
321
        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]
322

323
        # context layer shape: [b, np, sq, hn]
324
325
        output_size = (value_layer.size(1), 
                       value_layer.size(2), 
326
                       query_layer.size(0), 
327
328
                       value_layer.size(3)) 

329
330
        # change view [sk, b * np, hn] 
        value_layer = value_layer.view(value_layer.size(0),
331
332
                                       output_size[0] * output_size[1], -1)
        
333
        # change view [b * np, sq, sk]
334
335
336
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)
        
337
        # matmul: [b * np, sq, hn]
338
339
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0,1))

340
        # change view [b, np, sq, hn]
341
342
        context_layer = context_layer.view(*output_size)

343
        # [b, np, sq, hn] --> [sq, b, np, hn]
344
345
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

346
        # [sq, b, np, hn] --> [sq, b, hp]
347
348
349
350
351
352
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)


        # =================
353
        # Output. [sq, b, h]
354
355
356
        # =================

        output, bias = self.dense(context_layer)
357
358
359
360

        if get_key_value:
            output = [output, present]

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        return output, bias


def bias_dropout_add(x, bias, residual, prob, training) :
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
def bias_dropout_add_fused_train(x, bias, residual, prob) :
    # type: (Tensor, Tensor, Tensor, float) -> Tensor
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
def bias_dropout_add_fused_inference(x, bias, residual, prob) :
    # type: (Tensor, Tensor, Tensor, float) -> Tensor
    return bias_dropout_add(x, bias, residual, prob, False)
387
388
389
390
391
392
393
394


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

    Transformore layer takes input with size [b, s, h] and returns an
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
395

396
397
    def __init__(self, attention_mask_func, init_method, 
                 output_layer_init_method, layer_number):
Mohammad's avatar
Mohammad committed
398
        args = get_args()
399
400

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
401
        self.layer_number = layer_number
402
403

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
404
            = args.apply_residual_connection_post_layernorm
405
406
407

        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
408
409
            args.hidden_size,
            eps=args.layernorm_epsilon)
410
411

        # Self attention.
Mohammad's avatar
Mohammad committed
412
413
414
        self.attention = ParallelSelfAttention(attention_mask_func, init_method,
                                               output_layer_init_method,
                                               layer_number)
415
416
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
417
418
419

        # Layernorm on the input data.
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
420
421
            args.hidden_size,
            eps=args.layernorm_epsilon)
422
423

        # MLP
424
        self.mlp = ParallelMLP(init_method,
Mohammad's avatar
Mohammad committed
425
                               output_layer_init_method)
426
427
428
429
430
431
432
433

    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):
        # hidden_states: [b, s, h]

        # Layer norm at the begining of the transformer layer.
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
434
435
436
437
438
439
        attention_output, attention_bias = \
            self.attention(layernorm_output,
                           attention_mask,
                           layer_past=layer_past,
                           get_key_value=get_key_value)

440
441
        if get_key_value:
            attention_output, presents = attention_output
442
    
443
444
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
445
446
447
448
449
450
451
452
453
454
455
456
457
            residual = layernorm_output
        else:
            residual = hidden_states

        # jit scripting for a nn.module (with dropout) is not 
        # trigerring the fusion kernel. For now, we use two 
        # different nn.functional routines to account for varying
        # dropout semantics during training and inference phases.
        if self.bias_dropout_fusion:
            if self.training:
                bias_dropout_add_func = bias_dropout_add_fused_train
            else:
                bias_dropout_add_func = bias_dropout_add_fused_inference
458
        else:
459
460
461
462
463
464
465
466
467
468
            bias_dropout_add_func = get_bias_dropout_add(self.training)

        #re-enable torch grad to enable fused optimization.
        with torch.enable_grad():
            layernorm_input = bias_dropout_add_func(
                attention_output,
                attention_bias.expand_as(residual),
                residual,
                self.hidden_dropout)

469
470
471
472
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

        # MLP.
473
474
        mlp_output, mlp_bias = self.mlp(layernorm_output)
        
475
476
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
477
            residual = layernorm_output
478
        else:
479
480
481
482
483
484
485
486
487
            residual = layernorm_input

        #re-enable torch grad to enable fused optimization.
        with torch.enable_grad():
            output = bias_dropout_add_func(
                mlp_output,
                mlp_bias.expand_as(residual),
                residual,
                self.hidden_dropout)
488
489
490
491
492
493
494
495
496
497

        if get_key_value:
            output = [output, presents]

        return output


class ParallelTransformer(MegatronModule):
    """Transformer class."""

498
    def __init__(self, attention_mask_func,
Mohammad's avatar
Mohammad committed
499
                 init_method, output_layer_init_method):
500
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
501
        args = get_args()
502
503

        # Store activation checkpoiting flag.
Mohammad's avatar
Mohammad committed
504
505
        self.checkpoint_activations = args.checkpoint_activations
        self.checkpoint_num_layers = args.checkpoint_num_layers
506

507
        # Number of layers.
508
        self.num_layers = args.num_layers // args.pipeline_model_parallel_size
509
510
        # TODO: Need to do something different in case self.num_layers != self.num_unique_layers?
        if args.num_unique_layers is None:
Mohammad's avatar
Mohammad committed
511
            self.num_unique_layers = self.num_layers
512
        else:
513
            self.num_unique_layers = args.num_unique_layers // args.pipeline_model_parallel_size
514
515
        assert self.num_layers == self.num_unique_layers, \
            'number of layers should be equal to the number of unique layers'
Mohammad's avatar
Mohammad committed
516
517
518
519
        self.param_sharing_style = args.param_sharing_style

        # Transformer layers.
        def build_layer(layer_number):
520
            return ParallelTransformerLayer(
521
522
                attention_mask_func, init_method,
                output_layer_init_method, layer_number)
523
        offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
524
        self.layers = torch.nn.ModuleList(
525
            [build_layer(i + 1 + offset) for i in range(self.num_unique_layers)])
Mohammad's avatar
Mohammad committed
526
527
528
529
530
531

        # Print layer ordering.
        if self.num_layers != self.num_unique_layers:
            if torch.distributed.get_rank() == 0:
                print('> will be using the following layer ordering:')
                for i in range(self.num_layers):
mohammad's avatar
mohammad committed
532
533
534
                    print('   layer id: {:3d} --> unique layer id: '
                          '{:3d}'.format(i, self._get_layer_index(i)),
                          flush=True)
535

536
        if mpu.is_pipeline_last_stage():
537
538
539
540
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
                eps=args.layernorm_epsilon)
541

Mohammad's avatar
Mohammad committed
542
543
544
545
546
547
548
549
550
551
    def _get_layer_index(self, layer_number):
        if self.param_sharing_style == 'grouped':
            return layer_number % self.num_unique_layers
        if self.param_sharing_style == 'spaced':
            return layer_number // (self.num_layers // self.num_unique_layers) 
        assert False, 'should not be here'

    def _get_layer(self, layer_number):
        return self.layers[self._get_layer_index(layer_number)]

552
553
554
555
556
    def _checkpointed_forward(self, hidden_states, attention_mask):
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                x_ = inputs[0]
Mohammad's avatar
Mohammad committed
557
558
                for index in range(start, end):
                    layer = self._get_layer(index)
559
560
561
562
                    x_ = layer(x_, inputs[1])
                return x_
            return custom_forward

563
564
        # Make sure memory is freed.
        mpu.reset_checkpointed_activations_memory_buffer()
565
        l = 0
Mohammad's avatar
Mohammad committed
566
        while l < self.num_layers:
567
            hidden_states = mpu.checkpoint(
Neel Kant's avatar
Neel Kant committed
568
                custom(l, l + self.checkpoint_num_layers),
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
                hidden_states, attention_mask)
            l += self.checkpoint_num_layers

        return hidden_states

    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):

        # Checks
        if layer_past is not None:
            assert get_key_value, \
                'for not None values in layer_past, ' \
                'expected get_key_value to be set'
        if get_key_value:
            assert not self.checkpoint_activations, \
                'get_key_value does not work with ' \
                'activation checkpointing'

587
588
589
        # data format change to avoid explicit tranposes : [b s h] --> [s b h]
        hidden_states = hidden_states.transpose(0, 1).contiguous()

590
591
592
593
594
595
        if self.checkpoint_activations:
            hidden_states = self._checkpointed_forward(hidden_states,
                                                       attention_mask)
        else:
            if get_key_value:
                presents = []
Mohammad's avatar
Mohammad committed
596
597
            for index in range(self.num_layers):
                layer = self._get_layer(index)
598
599
                past = None
                if layer_past is not None:
Mohammad's avatar
Mohammad committed
600
                    past = layer_past[index]
601
602
603
604
605
606
607
                hidden_states = layer(hidden_states,
                                      attention_mask,
                                      layer_past=past,
                                      get_key_value=get_key_value)
                if get_key_value:
                    hidden_states, present = hidden_states
                    presents.append(present)
608
609
610
        
        # reverting data format change [s b h] --> [b s h]
        hidden_states = hidden_states.transpose(0, 1).contiguous()
611
612

        # Final layer norm.
613
        if mpu.is_pipeline_last_stage():
614
615
616
            output = self.final_layernorm(hidden_states)
        else:
            output = hidden_states
617
618
619
620
        if get_key_value:
            output = [output, presents]

        return output