transformer.py 21.6 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""

import math
import torch
20
import torch.nn.functional as F
21

Mohammad's avatar
Mohammad committed
22
from megatron import get_args
23
from megatron import mpu
24
from megatron.mpu import LayerNorm
25
from megatron.module import MegatronModule
26
27
28
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
from megatron.model.utils import openai_gelu, erf_gelu
29

30
31
32
33
34
# flags required to enable jit fusion kernels
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
35
36
37
38
39
40
41
42
43
44
45

""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
46
    Transformer takes input of size [s, b, h] and returns a
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
        attention_mask_func: a function that takes `unmaksed-attention-scores`
            with size [b, np, s, s] and an `attention-mask` and will apply
            the masking. The function should return a masked score of the
            same size [b, np, s, s].
               masked-attention-scores = attention_mask_func(
                                     unmaksed-attention-scores, attention-mask)
"""

class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
    state back into h hidden dimension. At the end, dropout is also
    applied.
    """

66
    def __init__(self, init_method, output_layer_init_method):
67
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
68
        args = get_args()
69
70
71

        # Project to 4h.
        self.dense_h_to_4h = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
72
            args.hidden_size,
Neel Kant's avatar
Neel Kant committed
73
            4 * args.hidden_size,
74
            gather_output=False,
75
76
            init_method=init_method,
            skip_bias_add=True)
77

78
79
80
81
82
83
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
84
85
86

        # Project back to h.
        self.dense_4h_to_h = mpu.RowParallelLinear(
Neel Kant's avatar
Neel Kant committed
87
            4 * args.hidden_size,
Mohammad's avatar
Mohammad committed
88
            args.hidden_size,
89
            input_is_parallel=True,
90
91
92
            init_method=output_layer_init_method,
            skip_bias_add=True)
         
93
94
95

    def forward(self, hidden_states):

96
97
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
98

99
100
101
102
103
104
105
106
107
108
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
109
110
111
112
113
114
115
116


class ParallelSelfAttention(MegatronModule):
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [b, s, h]
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
117

Mohammad's avatar
Mohammad committed
118
119
    def __init__(self, attention_mask_func, init_method,
                 output_layer_init_method, layer_number):
120
        super(ParallelSelfAttention, self).__init__()
Mohammad's avatar
Mohammad committed
121
        args = get_args()
Mohammad's avatar
Mohammad committed
122
        self.fp16 = args.fp16
123
        self.old_checkpoint_format = args.old_checkpoint_format
124
125

        self.attention_mask_func = attention_mask_func
Mohammad's avatar
Mohammad committed
126
127
        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
128
129
130
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
131
132
133

        # Per attention head and per partition values.
        world_size = mpu.get_model_parallel_world_size()
Mohammad's avatar
Mohammad committed
134
135
        self.hidden_size_per_partition = mpu.divide(args.hidden_size,
                                                    world_size)
136
        self.hidden_size_per_attention_head = mpu.divide(
Mohammad's avatar
Mohammad committed
137
            args.hidden_size, args.num_attention_heads)
138
        self.num_attention_heads_per_partition = mpu.divide(
Mohammad's avatar
Mohammad committed
139
            args.num_attention_heads, world_size)
140
141
142

        # Strided linear layer.
        self.query_key_value = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
143
            args.hidden_size,
Neel Kant's avatar
Neel Kant committed
144
            3 * args.hidden_size,
145
            gather_output=False,
Mohammad's avatar
Mohammad committed
146
            init_method=init_method)
147

148
149
150
151
152
153
154
155
156
        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16,
            args.scaled_upper_triang_masked_softmax_fusion,
157
            args.scaled_masked_softmax_fusion,
158
159
160
161
            self.attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

162
163
164
        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
Mohammad's avatar
Mohammad committed
165
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
166
167
168

        # Output.
        self.dense = mpu.RowParallelLinear(
Mohammad's avatar
Mohammad committed
169
170
            args.hidden_size,
            args.hidden_size,
171
            input_is_parallel=True,
172
173
            init_method=output_layer_init_method,
            skip_bias_add=True)
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
 
    def _transpose_last_dim(self, mixed_layer):
        """[s, b, 3 * hp] -->(view) [s, b, 3, hp] -->(tranpose)
        [s, b, hp, 3] -->(view) [s, b, 3 * hp] """

        input_shape = mixed_layer.size();
        last_dim = input_shape[-1]
        assert last_dim % 3 == 0
        last_dim_split = last_dim // 3
        
        intermediate_shape = input_shape[:-1] +\
            (3, last_dim_split)
        mixed_layer = mixed_layer.view(*intermediate_shape)
        mixed_layer = mixed_layer.transpose(-1, -2).contiguous()
        mixed_layer = mixed_layer.view(*input_shape)
        
        return mixed_layer
191

192
193
194
    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):
        # hidden_states: [s, b, h]
195

196
197
198
        # =====================
        # Query, Key, and Value
        # =====================
199

Vijay Korthikanti's avatar
bug fix  
Vijay Korthikanti committed
200
        # Attention heads [s, b, hp] --> [s, b, hp * 3]
201
        mixed_x_layer, _ = self.query_key_value(hidden_states)
202
203
 
        if self.old_checkpoint_format:
Vijay Korthikanti's avatar
bug fix  
Vijay Korthikanti committed
204
205
            # [s, b, 3 * hp] --> [s, b, hp * 3]
            mixed_x_layer = self._transpose_last_dim(mixed_x_layer)
206

Vijay Korthikanti's avatar
bug fix  
Vijay Korthikanti committed
207
        # [s, b, hp * 3] --> [s, b, np, hn, 3]  
208
209
        new_tensor_shape = mixed_x_layer.size()[:-1] + \
            (self.num_attention_heads_per_partition,
Vijay Korthikanti's avatar
bug fix  
Vijay Korthikanti committed
210
             self.hidden_size_per_attention_head, 3)
211
212
        mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

Vijay Korthikanti's avatar
bug fix  
Vijay Korthikanti committed
213
214
215
216
        # [s, b, np, hn, 3] --> 3 [s, b, np, hn]
        query_layer = mixed_x_layer[:,:,:,:,0]
        key_layer = mixed_x_layer[:,:,:,:,1]
        value_layer = mixed_x_layer[:,:,:,:,2]
217

218
219
220
        # ==================================
        # Adjust key and value for inference
        # ==================================
221
222
223
224

        if layer_past is not None:
            past_key, past_value = layer_past
            key_layer = torch.cat((past_key.type_as(key_layer),
225
                                   key_layer), dim=0)
226
            value_layer = torch.cat((past_value.type_as(value_layer),
227
                                     value_layer), dim=0)
228
229
230
231
        if get_key_value:
            present = (key_layer, value_layer)


232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================
        
        # [b, np, s, s]
        output_size = (query_layer.size(1), 
                       query_layer.size(2), 
                       query_layer.size(0), 
                       key_layer.size(0))
        
        # [s, b, np, hn] -> [s, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

        # preallocting result tensor: [b * np, s, s]
        matmul_result = torch.empty(
            output_size[0]*output_size[1], 
            output_size[2], 
            output_size[3],
            dtype=query_layer.dtype, 
            device=torch.cuda.current_device())

        # Raw attention scores. [b * np, s, s]
        matmul_result = torch.baddbmm(matmul_result, 
            query_layer.transpose(0, 1),   # [b * np, s, hn]
            key_layer.transpose(0,1).transpose(1, 2),  #[b * np, hn, s]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, s, s]
        attention_scores = matmul_result.view(*output_size)


        # ==================================================
        # Update attention mask for inference. [b, np, s, s]
        # ==================================================
269

270
271
272
273
274
        if get_key_value:
            with torch.no_grad():
                if layer_past is not None:
                    attention_mask = attention_mask[
                        ...,
Neel Kant's avatar
Neel Kant committed
275
                        attention_scores.size(3) - 1,
276
277
278
279
280
281
282
283
                        :attention_scores.size(3)].unsqueeze(2)
                else:
                    attention_mask = attention_mask[
                        ...,
                        :attention_scores.size(3),
                        :attention_scores.size(3)]


284
285
286
        # ===========================
        # Attention probs and dropout
        # ===========================
287

288
289
290
        # attention scores and attention mask [b, np, s, s]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        with mpu.get_cuda_rng_tracker().fork():
            attention_probs = self.attention_dropout(attention_probs)


        # =========================
        # Context layer. [s, b, hp]
        # =========================

                # value_layer -> context layer.
        # [s, b, np, hn] --> [b, np, s, hn]

        # context layer shape: [b, np, s, hn]
        output_size = (value_layer.size(1), 
                       value_layer.size(2), 
                       value_layer.size(0), 
                       value_layer.size(3)) 

        # change view [s, b * np, hn] 
        value_layer = value_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        
        # change view [b * np, s, s]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)
        
        # matmul: [b * np, s, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0,1))

        # change view [b, np, s, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, s, hn] --> [s, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [s, b, np, hn] --> [s, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)


        # =================
        # Output. [s, b, h]
        # =================

        output, bias = self.dense(context_layer)
339
340
341
342

        if get_key_value:
            output = [output, present]

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        return output, bias


def bias_dropout_add(x, bias, residual, prob, training) :
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
def bias_dropout_add_fused_train(x, bias, residual, prob) :
    # type: (Tensor, Tensor, Tensor, float) -> Tensor
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
def bias_dropout_add_fused_inference(x, bias, residual, prob) :
    # type: (Tensor, Tensor, Tensor, float) -> Tensor
    return bias_dropout_add(x, bias, residual, prob, False)
369
370
371
372
373
374
375
376


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

    Transformore layer takes input with size [b, s, h] and returns an
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
377

378
379
    def __init__(self, attention_mask_func, init_method, 
                 output_layer_init_method, layer_number):
Mohammad's avatar
Mohammad committed
380
        args = get_args()
381
382

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
383
        self.layer_number = layer_number
384
385

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
386
            = args.apply_residual_connection_post_layernorm
387
388
389

        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
390
391
            args.hidden_size,
            eps=args.layernorm_epsilon)
392
393

        # Self attention.
Mohammad's avatar
Mohammad committed
394
395
396
        self.attention = ParallelSelfAttention(attention_mask_func, init_method,
                                               output_layer_init_method,
                                               layer_number)
397
398
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
399
400
401

        # Layernorm on the input data.
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
402
403
            args.hidden_size,
            eps=args.layernorm_epsilon)
404
405

        # MLP
406
        self.mlp = ParallelMLP(init_method,
Mohammad's avatar
Mohammad committed
407
                               output_layer_init_method)
408
409
410
411
412
413
414
415

    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):
        # hidden_states: [b, s, h]

        # Layer norm at the begining of the transformer layer.
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
416
417
418
419
420
421
        attention_output, attention_bias = \
            self.attention(layernorm_output,
                           attention_mask,
                           layer_past=layer_past,
                           get_key_value=get_key_value)

422
423
        if get_key_value:
            attention_output, presents = attention_output
424
    
425
426
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
427
428
429
430
431
432
433
434
435
436
437
438
439
            residual = layernorm_output
        else:
            residual = hidden_states

        # jit scripting for a nn.module (with dropout) is not 
        # trigerring the fusion kernel. For now, we use two 
        # different nn.functional routines to account for varying
        # dropout semantics during training and inference phases.
        if self.bias_dropout_fusion:
            if self.training:
                bias_dropout_add_func = bias_dropout_add_fused_train
            else:
                bias_dropout_add_func = bias_dropout_add_fused_inference
440
        else:
441
442
443
444
445
446
447
448
449
450
            bias_dropout_add_func = get_bias_dropout_add(self.training)

        #re-enable torch grad to enable fused optimization.
        with torch.enable_grad():
            layernorm_input = bias_dropout_add_func(
                attention_output,
                attention_bias.expand_as(residual),
                residual,
                self.hidden_dropout)

451
452
453
454
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

        # MLP.
455
456
        mlp_output, mlp_bias = self.mlp(layernorm_output)
        
457
458
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
459
            residual = layernorm_output
460
        else:
461
462
463
464
465
466
467
468
469
            residual = layernorm_input

        #re-enable torch grad to enable fused optimization.
        with torch.enable_grad():
            output = bias_dropout_add_func(
                mlp_output,
                mlp_bias.expand_as(residual),
                residual,
                self.hidden_dropout)
470
471
472
473
474
475
476
477
478
479

        if get_key_value:
            output = [output, presents]

        return output


class ParallelTransformer(MegatronModule):
    """Transformer class."""

480
    def __init__(self, attention_mask_func,
Mohammad's avatar
Mohammad committed
481
                 init_method, output_layer_init_method):
482
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
483
        args = get_args()
484
485

        # Store activation checkpoiting flag.
Mohammad's avatar
Mohammad committed
486
487
        self.checkpoint_activations = args.checkpoint_activations
        self.checkpoint_num_layers = args.checkpoint_num_layers
488

Mohammad's avatar
Mohammad committed
489
490
491
492
493
494
495
496
497
498
499
        # Number of layers:
        self.num_layers = args.num_layers
        self.num_unique_layers = args.num_unique_layers
        if self.num_unique_layers is None:
            self.num_unique_layers = self.num_layers
        assert self.num_layers % self.num_unique_layers == 0, \
            'number of layers should be divisible by number of unique layers'
        self.param_sharing_style = args.param_sharing_style

        # Transformer layers.
        def build_layer(layer_number):
500
            return ParallelTransformerLayer(
501
502
                attention_mask_func, init_method,
                output_layer_init_method, layer_number)
503
        self.layers = torch.nn.ModuleList(
Mohammad's avatar
Mohammad committed
504
505
506
507
508
509
510
            [build_layer(i + 1) for i in range(self.num_unique_layers)])

        # Print layer ordering.
        if self.num_layers != self.num_unique_layers:
            if torch.distributed.get_rank() == 0:
                print('> will be using the following layer ordering:')
                for i in range(self.num_layers):
mohammad's avatar
mohammad committed
511
512
513
                    print('   layer id: {:3d} --> unique layer id: '
                          '{:3d}'.format(i, self._get_layer_index(i)),
                          flush=True)
514
515
516

        # Final layer norm before output.
        self.final_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
517
518
            args.hidden_size,
            eps=args.layernorm_epsilon)
519

Mohammad's avatar
Mohammad committed
520
521
522
523
524
525
526
527
528
529
    def _get_layer_index(self, layer_number):
        if self.param_sharing_style == 'grouped':
            return layer_number % self.num_unique_layers
        if self.param_sharing_style == 'spaced':
            return layer_number // (self.num_layers // self.num_unique_layers) 
        assert False, 'should not be here'

    def _get_layer(self, layer_number):
        return self.layers[self._get_layer_index(layer_number)]

530
531
532
533
534
    def _checkpointed_forward(self, hidden_states, attention_mask):
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                x_ = inputs[0]
Mohammad's avatar
Mohammad committed
535
536
                for index in range(start, end):
                    layer = self._get_layer(index)
537
538
539
540
                    x_ = layer(x_, inputs[1])
                return x_
            return custom_forward

541
542
        # Make sure memory is freed.
        mpu.reset_checkpointed_activations_memory_buffer()
543
        l = 0
Mohammad's avatar
Mohammad committed
544
        while l < self.num_layers:
545
            hidden_states = mpu.checkpoint(
Neel Kant's avatar
Neel Kant committed
546
                custom(l, l + self.checkpoint_num_layers),
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
                hidden_states, attention_mask)
            l += self.checkpoint_num_layers

        return hidden_states

    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):

        # Checks
        if layer_past is not None:
            assert get_key_value, \
                'for not None values in layer_past, ' \
                'expected get_key_value to be set'
        if get_key_value:
            assert not self.checkpoint_activations, \
                'get_key_value does not work with ' \
                'activation checkpointing'

565
566
567
        # data format change to avoid explicit tranposes : [b s h] --> [s b h]
        hidden_states = hidden_states.transpose(0, 1).contiguous()

568
569
570
571
572
573
        if self.checkpoint_activations:
            hidden_states = self._checkpointed_forward(hidden_states,
                                                       attention_mask)
        else:
            if get_key_value:
                presents = []
Mohammad's avatar
Mohammad committed
574
575
            for index in range(self.num_layers):
                layer = self._get_layer(index)
576
577
                past = None
                if layer_past is not None:
Mohammad's avatar
Mohammad committed
578
                    past = layer_past[index]
579
580
581
582
583
584
585
                hidden_states = layer(hidden_states,
                                      attention_mask,
                                      layer_past=past,
                                      get_key_value=get_key_value)
                if get_key_value:
                    hidden_states, present = hidden_states
                    presents.append(present)
586
587
588
        
        # reverting data format change [s b h] --> [b s h]
        hidden_states = hidden_states.transpose(0, 1).contiguous()
589
590
591
592
593
594
595

        # Final layer norm.
        output = self.final_layernorm(hidden_states)
        if get_key_value:
            output = [output, presents]

        return output