transformer.py 22.5 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""

import math
import torch
20
import torch.nn.functional as F
21

Mohammad's avatar
Mohammad committed
22
from megatron import get_args
23
24
from megatron import mpu
from megatron.module import MegatronModule
Vijay Korthikanti's avatar
Vijay Korthikanti committed
25
from megatron.checkpointing import get_checkpoint_version
26
from megatron.model import import_layernorm
27
28
29
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
from megatron.model.utils import openai_gelu, erf_gelu
30

31
32
33
34
35
# flags required to enable jit fusion kernels
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
36
37
38
39
40
41
42
43
44
45
46

""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
47
    Transformer takes input of size [s, b, h] and returns a
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
        attention_mask_func: a function that takes `unmaksed-attention-scores`
            with size [b, np, s, s] and an `attention-mask` and will apply
            the masking. The function should return a masked score of the
            same size [b, np, s, s].
               masked-attention-scores = attention_mask_func(
                                     unmaksed-attention-scores, attention-mask)
"""

class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
    state back into h hidden dimension. At the end, dropout is also
    applied.
    """

67
    def __init__(self, init_method, output_layer_init_method):
68
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
69
        args = get_args()
70
71
72

        # Project to 4h.
        self.dense_h_to_4h = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
73
            args.hidden_size,
Neel Kant's avatar
Neel Kant committed
74
            4 * args.hidden_size,
75
            gather_output=False,
76
77
            init_method=init_method,
            skip_bias_add=True)
78

79
80
81
82
83
84
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
85
86
87

        # Project back to h.
        self.dense_4h_to_h = mpu.RowParallelLinear(
Neel Kant's avatar
Neel Kant committed
88
            4 * args.hidden_size,
Mohammad's avatar
Mohammad committed
89
            args.hidden_size,
90
            input_is_parallel=True,
91
92
93
            init_method=output_layer_init_method,
            skip_bias_add=True)
         
94
95
96

    def forward(self, hidden_states):

97
98
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
99

100
101
102
103
104
105
106
107
108
109
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
110
111
112
113
114
115
116
117


class ParallelSelfAttention(MegatronModule):
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [b, s, h]
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
118

Mohammad's avatar
Mohammad committed
119
120
    def __init__(self, attention_mask_func, init_method,
                 output_layer_init_method, layer_number):
121
        super(ParallelSelfAttention, self).__init__()
Mohammad's avatar
Mohammad committed
122
        args = get_args()
Mohammad's avatar
Mohammad committed
123
        self.fp16 = args.fp16
124
125

        self.attention_mask_func = attention_mask_func
Mohammad's avatar
Mohammad committed
126
127
        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
128
129
130
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
131
132

        # Per attention head and per partition values.
133
        world_size = mpu.get_tensor_model_parallel_world_size()
Mohammad's avatar
Mohammad committed
134
135
        self.hidden_size_per_partition = mpu.divide(args.hidden_size,
                                                    world_size)
136
        self.hidden_size_per_attention_head = mpu.divide(
Mohammad's avatar
Mohammad committed
137
            args.hidden_size, args.num_attention_heads)
138
        self.num_attention_heads_per_partition = mpu.divide(
Mohammad's avatar
Mohammad committed
139
            args.num_attention_heads, world_size)
140
141
142

        # Strided linear layer.
        self.query_key_value = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
143
            args.hidden_size,
Neel Kant's avatar
Neel Kant committed
144
            3 * args.hidden_size,
145
            gather_output=False,
Mohammad's avatar
Mohammad committed
146
            init_method=init_method)
147

148
149
150
151
152
153
154
155
156
        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16,
            args.scaled_upper_triang_masked_softmax_fusion,
157
            args.scaled_masked_softmax_fusion,
158
159
160
161
            self.attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

162
163
164
        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
Mohammad's avatar
Mohammad committed
165
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
166
167
168

        # Output.
        self.dense = mpu.RowParallelLinear(
Mohammad's avatar
Mohammad committed
169
170
            args.hidden_size,
            args.hidden_size,
171
            input_is_parallel=True,
172
173
            init_method=output_layer_init_method,
            skip_bias_add=True)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
174

Vijay Korthikanti's avatar
Vijay Korthikanti committed
175
    def _transpose_last_dim(self, mixed_layer, num_splits, num_splits_first):
176
        input_shape = mixed_layer.size();
Vijay Korthikanti's avatar
Vijay Korthikanti committed
177
178
179
180
181
182
        if num_splits_first:
            """[s, b, num_splits * np * hn] 
            -->(view) [s, b, num_splits, np, hn] 
            -->(tranpose) [s, b, np, num_splits, hn] 
            -->(view) [s, b, np * num_splits * hn] """

183
184
185
            intermediate_shape = input_shape[:-1] +\
                (num_splits, self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
186

187
188
189
            mixed_layer = mixed_layer.view(*intermediate_shape)
            mixed_layer = mixed_layer.transpose(-2, -3).contiguous()
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
190
191
192
193
194
            """[s, b, np * hn * num_splits] 
            -->(view) [s, b, np, hn, num_splits] 
            -->(tranpose) [s, b, np, num_splits, hn] 
            -->(view) [s, b, np * num_splits * hn] """

195
196
197
198
199
200
            intermediate_shape = input_shape[:-1] +\
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head, num_splits)

            mixed_layer = mixed_layer.view(*intermediate_shape)
            mixed_layer = mixed_layer.transpose(-1, -2).contiguous()
201
202
203
        mixed_layer = mixed_layer.view(*input_shape)
        
        return mixed_layer
204

205
206
    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):
207
        # hidden_states: [sq, b, h]
208

209
210
211
        # =====================
        # Query, Key, and Value
        # =====================
212

Vijay Korthikanti's avatar
Vijay Korthikanti committed
213
        # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
214
        mixed_x_layer, _ = self.query_key_value(hidden_states)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
215

Vijay Korthikanti's avatar
Vijay Korthikanti committed
216
        checkpoint_version = get_checkpoint_version()
Mostofa Patwary's avatar
Mostofa Patwary committed
217
218
219
        if get_args().override_checkpoint_version is not None:
            checkpoint_version = get_args().override_checkpoint_version

220
221
222
        if checkpoint_version is not None:
           if checkpoint_version == 0:
               # [s, b, (3 * np * hn)] --> [s, b, (np * 3 * hn)]
Vijay Korthikanti's avatar
Vijay Korthikanti committed
223
               mixed_x_layer = self._transpose_last_dim(mixed_x_layer, 3, True)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
224
           elif checkpoint_version == 1.0:
225
               # [s, b, (np * hn * 3)] --> [s, b, (np * 3 * hn)]
Vijay Korthikanti's avatar
Vijay Korthikanti committed
226
               mixed_x_layer = self._transpose_last_dim(mixed_x_layer, 3, False)
227

Vijay Korthikanti's avatar
Vijay Korthikanti committed
228
        # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
229
230
        new_tensor_shape = mixed_x_layer.size()[:-1] + \
            (self.num_attention_heads_per_partition,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
231
             3 * self.hidden_size_per_attention_head)
232
233
        mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
234
235
236
237
        # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
        (query_layer,
         key_layer,
         value_layer) = mpu.split_tensor_along_last_dim(mixed_x_layer, 3)
238

239
240
241
        # ==================================
        # Adjust key and value for inference
        # ==================================
242
243
244
245

        if layer_past is not None:
            past_key, past_value = layer_past
            key_layer = torch.cat((past_key.type_as(key_layer),
246
                                   key_layer), dim=0)
247
            value_layer = torch.cat((past_value.type_as(value_layer),
248
                                     value_layer), dim=0)
249
250
251
252
        if get_key_value:
            present = (key_layer, value_layer)


253
254
255
256
        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================
        
257
        # [b, np, sq, sk]
258
259
260
261
262
        output_size = (query_layer.size(1), 
                       query_layer.size(2), 
                       query_layer.size(0), 
                       key_layer.size(0))
        
263
        # [sq, b, np, hn] -> [sq, b * np, hn]
264
265
266
267
268
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

269
        # preallocting result tensor: [b * np, sq, sk]
270
271
272
273
274
275
276
        matmul_result = torch.empty(
            output_size[0]*output_size[1], 
            output_size[2], 
            output_size[3],
            dtype=query_layer.dtype, 
            device=torch.cuda.current_device())

277
        # Raw attention scores. [b * np, sq, sk]
278
        matmul_result = torch.baddbmm(matmul_result, 
279
280
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0,1).transpose(1, 2),  #[b * np, hn, sk]
281
282
            beta=0.0, alpha=(1.0/self.norm_factor))

283
        # change view to [b, np, sq, sk]
284
285
286
287
        attention_scores = matmul_result.view(*output_size)


        # ==================================================
288
        # Update attention mask for inference. [b, np, sq, sk]
289
        # ==================================================
290

291
292
293
294
295
        if get_key_value:
            with torch.no_grad():
                if layer_past is not None:
                    attention_mask = attention_mask[
                        ...,
Neel Kant's avatar
Neel Kant committed
296
                        attention_scores.size(3) - 1,
297
298
299
300
301
302
303
304
                        :attention_scores.size(3)].unsqueeze(2)
                else:
                    attention_mask = attention_mask[
                        ...,
                        :attention_scores.size(3),
                        :attention_scores.size(3)]


305
306
307
        # ===========================
        # Attention probs and dropout
        # ===========================
308

309
        # attention scores and attention mask [b, np, sq, sk]
310
311
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)
312

313
314
315
316
317
318
319
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        with mpu.get_cuda_rng_tracker().fork():
            attention_probs = self.attention_dropout(attention_probs)


        # =========================
320
        # Context layer. [sq, b, hp]
321
322
        # =========================

323
324
        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]
325

326
        # context layer shape: [b, np, sq, hn]
327
328
        output_size = (value_layer.size(1), 
                       value_layer.size(2), 
329
                       query_layer.size(0), 
330
331
                       value_layer.size(3)) 

332
333
        # change view [sk, b * np, hn] 
        value_layer = value_layer.view(value_layer.size(0),
334
335
                                       output_size[0] * output_size[1], -1)
        
336
        # change view [b * np, sq, sk]
337
338
339
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)
        
340
        # matmul: [b * np, sq, hn]
341
342
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0,1))

343
        # change view [b, np, sq, hn]
344
345
        context_layer = context_layer.view(*output_size)

346
        # [b, np, sq, hn] --> [sq, b, np, hn]
347
348
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

349
        # [sq, b, np, hn] --> [sq, b, hp]
350
351
352
353
354
355
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)


        # =================
356
        # Output. [sq, b, h]
357
358
359
        # =================

        output, bias = self.dense(context_layer)
360
361
362
363

        if get_key_value:
            output = [output, present]

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        return output, bias


def bias_dropout_add(x, bias, residual, prob, training) :
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
def bias_dropout_add_fused_train(x, bias, residual, prob) :
    # type: (Tensor, Tensor, Tensor, float) -> Tensor
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
def bias_dropout_add_fused_inference(x, bias, residual, prob) :
    # type: (Tensor, Tensor, Tensor, float) -> Tensor
    return bias_dropout_add(x, bias, residual, prob, False)
390
391
392
393
394
395
396
397


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

    Transformore layer takes input with size [b, s, h] and returns an
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
398

399
400
    def __init__(self, attention_mask_func, init_method, 
                 output_layer_init_method, layer_number):
Mohammad's avatar
Mohammad committed
401
        args = get_args()
402
403

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
404
        self.layer_number = layer_number
405
406

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
407
            = args.apply_residual_connection_post_layernorm
408
409

        # Layernorm on the input data.
410
        LayerNorm = import_layernorm(args.fp32_residual_connection)
411
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
412
413
            args.hidden_size,
            eps=args.layernorm_epsilon)
414
415

        # Self attention.
Mohammad's avatar
Mohammad committed
416
417
418
        self.attention = ParallelSelfAttention(attention_mask_func, init_method,
                                               output_layer_init_method,
                                               layer_number)
419
420
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
421
422
423

        # Layernorm on the input data.
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
424
425
            args.hidden_size,
            eps=args.layernorm_epsilon)
426
427

        # MLP
428
        self.mlp = ParallelMLP(init_method,
Mohammad's avatar
Mohammad committed
429
                               output_layer_init_method)
430
431
432
433
434
435
436
437

    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):
        # hidden_states: [b, s, h]

        # Layer norm at the begining of the transformer layer.
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
438
439
440
441
442
443
        attention_output, attention_bias = \
            self.attention(layernorm_output,
                           attention_mask,
                           layer_past=layer_past,
                           get_key_value=get_key_value)

444
445
        if get_key_value:
            attention_output, presents = attention_output
446
    
447
448
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
449
450
451
452
453
454
455
456
457
458
459
460
461
            residual = layernorm_output
        else:
            residual = hidden_states

        # jit scripting for a nn.module (with dropout) is not 
        # trigerring the fusion kernel. For now, we use two 
        # different nn.functional routines to account for varying
        # dropout semantics during training and inference phases.
        if self.bias_dropout_fusion:
            if self.training:
                bias_dropout_add_func = bias_dropout_add_fused_train
            else:
                bias_dropout_add_func = bias_dropout_add_fused_inference
462
        else:
463
464
465
466
467
468
469
470
471
472
            bias_dropout_add_func = get_bias_dropout_add(self.training)

        #re-enable torch grad to enable fused optimization.
        with torch.enable_grad():
            layernorm_input = bias_dropout_add_func(
                attention_output,
                attention_bias.expand_as(residual),
                residual,
                self.hidden_dropout)

473
474
475
476
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

        # MLP.
477
        mlp_output, mlp_bias = self.mlp(layernorm_output)
Mostofa Patwary's avatar
Mostofa Patwary committed
478

479
480
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
481
            residual = layernorm_output
482
        else:
483
484
485
486
487
488
489
490
491
            residual = layernorm_input

        #re-enable torch grad to enable fused optimization.
        with torch.enable_grad():
            output = bias_dropout_add_func(
                mlp_output,
                mlp_bias.expand_as(residual),
                residual,
                self.hidden_dropout)
492
493
494
495
496
497
498
499
500
501

        if get_key_value:
            output = [output, presents]

        return output


class ParallelTransformer(MegatronModule):
    """Transformer class."""

502
    def __init__(self, attention_mask_func,
Mohammad's avatar
Mohammad committed
503
                 init_method, output_layer_init_method):
504
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
505
        args = get_args()
506

507
508
        self.fp32_residual_connection = args.fp32_residual_connection

509
        # Store activation checkpoiting flag.
Mohammad's avatar
Mohammad committed
510
511
        self.checkpoint_activations = args.checkpoint_activations
        self.checkpoint_num_layers = args.checkpoint_num_layers
512

513
        # Number of layers.
514
        assert args.num_layers % mpu.get_pipeline_model_parallel_world_size() == 0, \
515
            'num_layers must be divisible by pipeline_model_parallel_size'
516
        self.num_layers = args.num_layers // mpu.get_pipeline_model_parallel_world_size()
Mohammad's avatar
Mohammad committed
517
518
519

        # Transformer layers.
        def build_layer(layer_number):
520
            return ParallelTransformerLayer(
521
522
                attention_mask_func, init_method,
                output_layer_init_method, layer_number)
523
        offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
524
        self.layers = torch.nn.ModuleList(
525
            [build_layer(i + 1 + offset) for i in range(self.num_layers)])
526

527
        if mpu.is_pipeline_last_stage():
528
            # Final layer norm before output.
529
            LayerNorm = import_layernorm(args.fp32_residual_connection)
530
531
532
            self.final_layernorm = LayerNorm(
                args.hidden_size,
                eps=args.layernorm_epsilon)
533

Mohammad's avatar
Mohammad committed
534
    def _get_layer(self, layer_number):
535
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
536

537
538
539
540
541
    def _checkpointed_forward(self, hidden_states, attention_mask):
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                x_ = inputs[0]
Mohammad's avatar
Mohammad committed
542
543
                for index in range(start, end):
                    layer = self._get_layer(index)
544
545
546
547
                    x_ = layer(x_, inputs[1])
                return x_
            return custom_forward

548
549
        # Make sure memory is freed.
        mpu.reset_checkpointed_activations_memory_buffer()
550
        l = 0
Mohammad's avatar
Mohammad committed
551
        while l < self.num_layers:
552
            hidden_states = mpu.checkpoint(
Neel Kant's avatar
Neel Kant committed
553
                custom(l, l + self.checkpoint_num_layers),
554
555
556
557
558
559
560
561
                hidden_states, attention_mask)
            l += self.checkpoint_num_layers

        return hidden_states

    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):

562
        # Checks.
563
564
565
566
567
568
569
570
571
        if layer_past is not None:
            assert get_key_value, \
                'for not None values in layer_past, ' \
                'expected get_key_value to be set'
        if get_key_value:
            assert not self.checkpoint_activations, \
                'get_key_value does not work with ' \
                'activation checkpointing'

572
573
        if mpu.is_pipeline_first_stage():
            # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
mshoeybi's avatar
mshoeybi committed
574
            # If the input flag for fp32 residual connection is set, convert for float.
575
576
            if self.fp32_residual_connection:
                hidden_states = hidden_states.transpose(0, 1).contiguous().float()
mshoeybi's avatar
mshoeybi committed
577
            # Otherwise, leave it as is.
578
579
            else:
                hidden_states = hidden_states.transpose(0, 1).contiguous()
580

581
582
583
584
585
586
        if self.checkpoint_activations:
            hidden_states = self._checkpointed_forward(hidden_states,
                                                       attention_mask)
        else:
            if get_key_value:
                presents = []
Mohammad's avatar
Mohammad committed
587
588
            for index in range(self.num_layers):
                layer = self._get_layer(index)
589
590
                past = None
                if layer_past is not None:
Mohammad's avatar
Mohammad committed
591
                    past = layer_past[index]
592
593
594
595
596
597
598
                hidden_states = layer(hidden_states,
                                      attention_mask,
                                      layer_past=past,
                                      get_key_value=get_key_value)
                if get_key_value:
                    hidden_states, present = hidden_states
                    presents.append(present)
599
        
600
        # Final layer norm.
601
        if mpu.is_pipeline_last_stage():
602
603
            # Reverting data format change [s b h] --> [b s h].
            hidden_states = hidden_states.transpose(0, 1).contiguous()
604
605
606
            output = self.final_layernorm(hidden_states)
        else:
            output = hidden_states
607
608
609
610
        if get_key_value:
            output = [output, presents]

        return output