moe_cuda_kernel.cu 12.2 KB
Newer Older
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
1
2
#include <torch/extension.h>
#include <torch/torch.h>
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
3
4
5
#include <cstdio>
#include <iostream>
#include <vector>
Jiezhong Qiu's avatar
Jiezhong Qiu committed
6
#include <cassert>
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
7

Jiezhong Qiu's avatar
Jiezhong Qiu committed
8

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
9
10
11
12
#include <cuda.h>
#include <cuda_runtime.h>
#include <cublas_v2.h>                                                                                          
#include <helper_cuda.h> 
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
13

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
14
// #include "timer.hh"
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
15
16
17

#define CEIL(_x_,_y_) (((_x_)-1)/(_y_)+1)

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

class Helper {
public:
    Helper(const size_t num_expert_) : num_expert(num_expert_) {
        streams = new cudaStream_t[num_expert];
        checkCudaErrors(cublasCreate(&handle));
        for (size_t i=0; i<num_expert; ++i) {
            checkCudaErrors(cudaStreamCreate(streams+i));
        }
    }
    ~Helper() {
        for (size_t i=0; i<num_expert; ++i) {
            checkCudaErrors(cudaStreamDestroy(*(streams+i)));
        }
        checkCudaErrors(cublasDestroy(handle));
    }
    const size_t num_expert;
    cublasHandle_t handle;
    cudaStream_t* streams;
}; 

Helper* helper = NULL;
Helper* getHelper(const size_t num_expert) { 
    if (!helper) {
        helper = new Helper(num_expert);        
    }
Jiezhong Qiu's avatar
Jiezhong Qiu committed
44
    assert(helper->num_expert == num_expert);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
45
46
47
48
    return helper;
}


Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
49
50
template <typename scalar_t>
__global__
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
51
void generate_ptr_offset_kernel(size_t n, const scalar_t* base, size_t stride, const int* offset, const scalar_t** ptrs) {
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
52
53
54
55
56
57
	size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
	if (idx < n) {
		ptrs[idx] = base + stride * offset[idx];
	}
}

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
58

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
59
60
61
62
63
64
65
66
67
inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
                                  cublasOperation_t transa,
                                  cublasOperation_t transb,
                                  int m, int n, int k,
                                  const float           *alpha,
                                  const float           *Aarray[], int lda,
                                  const float           *Barray[], int ldb,
                                  const float           *beta,
                                  float           *Carray[], int ldc,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
68
                                  int batchCount) {
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
69
70
71
72
73
74
75
76
77
78
79
80
    return cublasSgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}

inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
                                  cublasOperation_t transa,
                                  cublasOperation_t transb,
                                  int m, int n, int k,
                                  const double           *alpha,
                                  const double           *Aarray[], int lda,
                                  const double           *Barray[], int ldb,
                                  const double           *beta,
                                  double           *Carray[], int ldc,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
81
                                  int batchCount) {
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
82
83
84
85
86
87
88
89
90
91
92
93
    return cublasDgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}

inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
                                  cublasOperation_t transa,
                                  cublasOperation_t transb,
                                  int m, int n, int k,
                                  const __half           *alpha,
                                  const __half           *Aarray[], int lda,
                                  const __half           *Barray[], int ldb,
                                  const __half           *beta,
                                  __half           *Carray[], int ldc,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
94
                                  int batchCount) {
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
95
96
97
    return cublasHgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
98

Jiezhong Qiu's avatar
Jiezhong Qiu committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
inline cublasStatus_t cublasXgemm(cublasHandle_t handle,
                                cublasOperation_t transa, cublasOperation_t transb,
                                int m, int n, int k,
                                const float           *alpha,
                                const float           *A, int lda,
                                const float           *B, int ldb,
                                const float           *beta,
                                float           *C, int ldc) {
    return cublasSgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
}

inline cublasStatus_t cublasXgemm(cublasHandle_t handle,
                                cublasOperation_t transa, cublasOperation_t transb,
                                int m, int n, int k,
                                const double          *alpha,
                                const double          *A, int lda,
                                const double          *B, int ldb,
                                const double          *beta,
                                double          *C, int ldc) {
    return cublasDgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
}

inline cublasStatus_t cublasXgemm(cublasHandle_t handle,
                                cublasOperation_t transa, cublasOperation_t transb,
                                int m, int n, int k,
                                const __half *alpha,
                                const __half *A, int lda,
                                const __half *B, int ldb,
                                const __half *beta,
                                __half *C, int ldc) {
    return cublasHgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
}

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
132
template <typename scalar_t>
Jiezhong Qiu's avatar
Jiezhong Qiu committed
133
void moe_cuda_forward_impl(
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
134
        const scalar_t* input,
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
135
        const int* gate,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
136
137
        const scalar_t* weight,
        scalar_t* output,
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
138
139
        const size_t batch_size,
        const size_t in_feat,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
140
141
142
143
        const size_t out_feat,
        const size_t num_expert,
        cublasOperation_t transb) {
    /*
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
144
145
    cublasHandle_t handle;
	cudaStream_t st;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
146
	checkCudaErrors(cudaStreamCreate(&st));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
147
    checkCudaErrors(cublasCreate(&handle));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
148
149
150
151
    */
    Helper* h = getHelper(num_expert);

    checkCudaErrors(cublasSetStream(h->handle, *(h->streams)));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
152
153
154
155
156
157
158
159

    // setup Aarray, Barray and Carray
	std::vector<const scalar_t*> aptrs;
    std::vector<scalar_t*> cptrs;
	
    const scalar_t **Aarray;
    const scalar_t **Barray;
    scalar_t **Carray;
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
160
161
162
	checkCudaErrors(cudaMalloc(&Aarray, batch_size * sizeof(const scalar_t*)));
    checkCudaErrors(cudaMalloc(&Barray, batch_size * sizeof(const scalar_t*)));
    checkCudaErrors(cudaMalloc(&Carray, batch_size * sizeof(scalar_t*)));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
163
164

	for (size_t i=0; i<batch_size; ++i) {
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
165
166
        aptrs.push_back(input + in_feat * i);
        cptrs.push_back(output + out_feat * i);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
167
	}
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
168
	checkCudaErrors(cudaMemcpy(Aarray, aptrs.data(), batch_size * sizeof(const scalar_t*), cudaMemcpyHostToDevice));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
169
	// checkCudaErrors(cudaMemcpy(ptrs + batch_size * top_k, bptrs.data(), batch_size * sizeof(scalar_t*) * top_k, cudaMemcpyHostToDevice));
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
170
	checkCudaErrors(cudaMemcpy(Carray, cptrs.data(), batch_size * sizeof(scalar_t*), cudaMemcpyHostToDevice));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
171

Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
172
	dim3 griddim(CEIL(batch_size, 256));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
173
	dim3 blockdim(256);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
174
    generate_ptr_offset_kernel<<<griddim, blockdim, 0, *(h->streams)>>>(batch_size, weight, out_feat * in_feat, gate, Barray);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
175
176

    scalar_t alpha = 1, beta = 0;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
177
	checkCudaErrors(cublasXgemmBatched(h->handle, 
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
178
			CUBLAS_OP_N,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
179
			transb,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
180
181
182
183
184
185
			1, out_feat, in_feat,
			&alpha,
			Aarray, 1,
			Barray, out_feat,
			&beta,
			Carray, 1,
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
186
			batch_size));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
187

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
188
	checkCudaErrors(cudaStreamSynchronize(*(h->streams)));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
189
190
}

Jiezhong Qiu's avatar
Jiezhong Qiu committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
template <typename scalar_t>
void moe_cuda_grad_weight(
        const scalar_t* input,
        const int* gate,
        const scalar_t* grad_output,
        scalar_t* grad_weight, // [num_expert x out_feat x in_feat]
        const size_t batch_size,
        const size_t in_feat,
        const size_t out_feat,
        const size_t num_expert,
        cublasOperation_t transb) {

    Helper* h = getHelper(num_expert);
    
    int* gate_host = new int[batch_size];
    scalar_t alpha = 1, beta = 1;
    checkCudaErrors(cudaMemcpy(gate_host, gate, batch_size * sizeof(int), cudaMemcpyDeviceToHost));
    for (size_t i=0; i<batch_size; ++i) {
        checkCudaErrors(cublasSetStream(h->handle, *(h->streams + gate_host[i])));
        checkCudaErrors(cublasSgemm(h->handle,
            CUBLAS_OP_N, 
            CUBLAS_OP_N,
            out_feat, 
            in_feat, 
            1,
            &alpha,
            grad_output + i * out_feat,
            out_feat,
            input + i * in_feat,
            1,
            &beta,
            grad_weight + gate_host[i] * out_feat * in_feat,
            out_feat));
    }
    checkCudaErrors(cudaDeviceSynchronize());
    delete[] gate_host;
}
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
228

Jiezhong Qiu's avatar
Jiezhong Qiu committed
229
std::vector<torch::Tensor> moe_cuda_forward(
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
230
231
232
233
234
235
236
237
238
        torch::Tensor input,
        torch::Tensor gate,
        torch::Tensor weight) {
    const auto batch_size = input.size(0);
    const auto num_expert = weight.size(0);
    const auto out_feat = weight.size(1);
    const auto in_feat = weight.size(2);
            
    // printf("b=%ld, expert=%ld, in_feat (d_model)=%ld, out_feat (d_ffn)=%ld, topk=%ld\n", batch_size, num_expert, in_feat, out_feat, top_k);
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
239
    auto output = input.new_zeros({batch_size, out_feat});
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
240
    
Jiezhong Qiu's avatar
Jiezhong Qiu committed
241
242
    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe_forward_cuda", ([&] {
                moe_cuda_forward_impl<scalar_t>(
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
243
244
245
246
247
248
                    input.data_ptr<scalar_t>(),
                    gate.data_ptr<int>(),
                    weight.data_ptr<scalar_t>(),
                    output.data_ptr<scalar_t>(),
                    batch_size,
                    in_feat,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
249
250
251
                    out_feat,
                    num_expert,
                    CUBLAS_OP_T
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
252
253
254
255
256
257
                );
    }));
    
    return {output, };           
}

Jiezhong Qiu's avatar
Jiezhong Qiu committed
258
std::vector<torch::Tensor> moe_cuda_backward(
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
259
260
261
262
263
264
265
266
267
268
269
270
    torch::Tensor grad_output, // [batch_size x out_feat]
    torch::Tensor input, // [batch_size x out_feat]
    torch::Tensor gate,  // [batch_size]
    torch::Tensor weight // [num_expert x out_feat x in_feat]
) {
    const auto batch_size = input.size(0);
    const auto num_expert = weight.size(0);
    const auto out_feat = weight.size(1);
    const auto in_feat = weight.size(2);

    auto grad_input = grad_output.new_zeros({batch_size, in_feat});  // batch_size x in_feat
    auto grad_weight = grad_output.new_zeros({num_expert, out_feat, in_feat}); // num_expert x out_feat x in_feat
Jiezhong Qiu's avatar
Jiezhong Qiu committed
271
272
273
274

    // grad_input is easy to compute, exactly the same as forward
    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe_cuda_backward", ([&] {
        moe_cuda_forward_impl<scalar_t>(
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
            grad_output.data_ptr<scalar_t>(),
            gate.data_ptr<int>(),
            weight.data_ptr<scalar_t>(),
            grad_input.data_ptr<scalar_t>(),
            batch_size,
            out_feat,
            in_feat,
            num_expert,
            CUBLAS_OP_N
        );
    }));
    return {grad_input, grad_weight};
}

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
289
290

/*
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
291
int main() {
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
292
293
294
295
296
297
    typedef float data_t;
    size_t batch_size = 4096;
    size_t top_k = 2;
    size_t num_expert = 128;
    size_t in_feat = 1024;
    size_t out_feat = 4096;
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
298
	data_t *input, *weight;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
299
	data_t *output;
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
300
	size_t *gate;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
301

Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
302
303
	checkCudaErrors(cudaMalloc(&input, batch_size * in_feat * sizeof(data_t)));
	checkCudaErrors(cudaMalloc(&weight, num_expert * in_feat * out_feat * sizeof(data_t)));	
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
304
	checkCudaErrors(cudaMalloc(&output, batch_size * top_k * out_feat * sizeof(data_t)));
Jiezhong Qiu's avatar
Jiezhong Qiu committed
305
306
307
308
    checkCudaErrors(cudaMalloc(&gate, batch_size * top_k * sizeof(size_t)));
    
    size_t nt = 16;
    double tsum = 0, tmax = 0;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
309

Jiezhong Qiu's avatar
Jiezhong Qiu committed
310
311
312
313
314
315
    size_t *gate_host = new size_t[batch_size * top_k];
    for (size_t i=0; i<batch_size * top_k; ++i) {
        gate_host[i] = rand() % num_expert;
    } 
    checkCudaErrors(cudaMemcpy(gate, gate_host, batch_size * top_k * sizeof(size_t), cudaMemcpyHostToDevice));

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
316
    moe_first_linear_cuda_forward<data_t>(input, gate, weight, output, batch_size, top_k, in_feat, out_feat);
Jiezhong Qiu's avatar
Jiezhong Qiu committed
317
318
319
    
    for (size_t i=0; i<nt; ++i) {
        timestamp(start);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
320
		moe_first_linear_cuda_forward<data_t>(input, gate, weight, output, batch_size, top_k, in_feat, out_feat);
Jiezhong Qiu's avatar
Jiezhong Qiu committed
321
322
323
324
325
326
327
328
		timestamp(end);
		auto t = getDuration(start, end);
		tsum += t;
		if (t > tmax) tmax = t;
    }
    printf("Mean %.3lf us, max %.3lf us\n", tsum / nt * 1e6, tmax * 1e6);
	double tflops = (double)batch_size * top_k * in_feat * out_feat * nt * 2e-12 / tsum;
	printf("%.3lf TFLOPs\n", tflops);
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
329
330
}
*/