moe_cuda_kernel.cu 9.22 KB
Newer Older
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
1
2
#include <torch/extension.h>
#include <torch/torch.h>
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
3
4
5
6
#include <cstdio>
#include <iostream>
#include <vector>

Jiezhong Qiu's avatar
Jiezhong Qiu committed
7

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
8
9
10
11
#include <cuda.h>
#include <cuda_runtime.h>
#include <cublas_v2.h>                                                                                          
#include <helper_cuda.h> 
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
12

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
13
// #include "timer.hh"
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
14
15
16

#define CEIL(_x_,_y_) (((_x_)-1)/(_y_)+1)

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

class Helper {
public:
    Helper(const size_t num_expert_) : num_expert(num_expert_) {
        streams = new cudaStream_t[num_expert];
        checkCudaErrors(cublasCreate(&handle));
        for (size_t i=0; i<num_expert; ++i) {
            checkCudaErrors(cudaStreamCreate(streams+i));
        }
    }
    ~Helper() {
        for (size_t i=0; i<num_expert; ++i) {
            checkCudaErrors(cudaStreamDestroy(*(streams+i)));
        }
        checkCudaErrors(cublasDestroy(handle));
    }
    const size_t num_expert;
    cublasHandle_t handle;
    cudaStream_t* streams;
}; 

Helper* helper = NULL;
Helper* getHelper(const size_t num_expert) { 
    if (!helper) {
        helper = new Helper(num_expert);        
    }
    return helper;
}


Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
47
48
template <typename scalar_t>
__global__
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
49
void generate_ptr_offset_kernel(size_t n, const scalar_t* base, size_t stride, const int* offset, const scalar_t** ptrs) {
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
50
51
52
53
54
55
	size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
	if (idx < n) {
		ptrs[idx] = base + stride * offset[idx];
	}
}

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
56

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
                                  cublasOperation_t transa,
                                  cublasOperation_t transb,
                                  int m, int n, int k,
                                  const float           *alpha,
                                  const float           *Aarray[], int lda,
                                  const float           *Barray[], int ldb,
                                  const float           *beta,
                                  float           *Carray[], int ldc,
                                  int batchCount)
{
    return cublasSgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}

inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
                                  cublasOperation_t transa,
                                  cublasOperation_t transb,
                                  int m, int n, int k,
                                  const double           *alpha,
                                  const double           *Aarray[], int lda,
                                  const double           *Barray[], int ldb,
                                  const double           *beta,
                                  double           *Carray[], int ldc,
                                  int batchCount)
{
    return cublasDgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}

inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
                                  cublasOperation_t transa,
                                  cublasOperation_t transb,
                                  int m, int n, int k,
                                  const __half           *alpha,
                                  const __half           *Aarray[], int lda,
                                  const __half           *Barray[], int ldb,
                                  const __half           *beta,
                                  __half           *Carray[], int ldc,
                                  int batchCount)
{
    return cublasHgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
99

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
100
template <typename scalar_t>
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
101
void moe1_cuda_forward_impl(
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
102
        const scalar_t* input,
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
103
        const int* gate,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
104
105
        const scalar_t* weight,
        scalar_t* output,
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
106
107
        const size_t batch_size,
        const size_t in_feat,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
108
109
110
111
        const size_t out_feat,
        const size_t num_expert,
        cublasOperation_t transb) {
    /*
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
112
113
    cublasHandle_t handle;
	cudaStream_t st;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
114
	checkCudaErrors(cudaStreamCreate(&st));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
115
    checkCudaErrors(cublasCreate(&handle));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
116
117
118
119
    */
    Helper* h = getHelper(num_expert);

    checkCudaErrors(cublasSetStream(h->handle, *(h->streams)));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
120
121
122
123
124
125
126
127

    // setup Aarray, Barray and Carray
	std::vector<const scalar_t*> aptrs;
    std::vector<scalar_t*> cptrs;
	
    const scalar_t **Aarray;
    const scalar_t **Barray;
    scalar_t **Carray;
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
128
129
130
	checkCudaErrors(cudaMalloc(&Aarray, batch_size * sizeof(const scalar_t*)));
    checkCudaErrors(cudaMalloc(&Barray, batch_size * sizeof(const scalar_t*)));
    checkCudaErrors(cudaMalloc(&Carray, batch_size * sizeof(scalar_t*)));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
131
132

	for (size_t i=0; i<batch_size; ++i) {
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
133
134
        aptrs.push_back(input + in_feat * i);
        cptrs.push_back(output + out_feat * i);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
135
	}
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
136
	checkCudaErrors(cudaMemcpy(Aarray, aptrs.data(), batch_size * sizeof(const scalar_t*), cudaMemcpyHostToDevice));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
137
	// checkCudaErrors(cudaMemcpy(ptrs + batch_size * top_k, bptrs.data(), batch_size * sizeof(scalar_t*) * top_k, cudaMemcpyHostToDevice));
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
138
	checkCudaErrors(cudaMemcpy(Carray, cptrs.data(), batch_size * sizeof(scalar_t*), cudaMemcpyHostToDevice));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
139

Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
140
	dim3 griddim(CEIL(batch_size, 256));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
141
	dim3 blockdim(256);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
142
    generate_ptr_offset_kernel<<<griddim, blockdim, 0, *(h->streams)>>>(batch_size, weight, out_feat * in_feat, gate, Barray);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
143
144

    scalar_t alpha = 1, beta = 0;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
145
	checkCudaErrors(cublasXgemmBatched(h->handle, 
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
146
			CUBLAS_OP_N,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
147
			transb,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
148
149
150
151
152
153
			1, out_feat, in_feat,
			&alpha,
			Aarray, 1,
			Barray, out_feat,
			&beta,
			Carray, 1,
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
154
			batch_size));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
155

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
156
157
158
	checkCudaErrors(cudaStreamSynchronize(*(h->streams)));
    // checkCudaErrors(cudaStreamDestroy(st));
    // checkCudaErrors(cublasDestroy(handle));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
159
160
161
}


Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
162
163
164
165
166
167
168
169
170
171
std::vector<torch::Tensor> moe1_cuda_forward(
        torch::Tensor input,
        torch::Tensor gate,
        torch::Tensor weight) {
    const auto batch_size = input.size(0);
    const auto num_expert = weight.size(0);
    const auto out_feat = weight.size(1);
    const auto in_feat = weight.size(2);
            
    // printf("b=%ld, expert=%ld, in_feat (d_model)=%ld, out_feat (d_ffn)=%ld, topk=%ld\n", batch_size, num_expert, in_feat, out_feat, top_k);
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
172
    auto output = input.new_zeros({batch_size, out_feat});
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
173
174
175
176
177
178
179
180
181
    
    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe1_forward_cuda", ([&] {
                moe1_cuda_forward_impl<scalar_t>(
                    input.data_ptr<scalar_t>(),
                    gate.data_ptr<int>(),
                    weight.data_ptr<scalar_t>(),
                    output.data_ptr<scalar_t>(),
                    batch_size,
                    in_feat,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
182
183
184
                    out_feat,
                    num_expert,
                    CUBLAS_OP_T
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
185
186
187
188
189
190
                );
    }));
    
    return {output, };           
}

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
std::vector<torch::Tensor> moe1_cuda_backward(
    torch::Tensor grad_output, // [batch_size x out_feat]
    torch::Tensor input, // [batch_size x out_feat]
    torch::Tensor gate,  // [batch_size]
    torch::Tensor weight // [num_expert x out_feat x in_feat]
) {
    const auto batch_size = input.size(0);
    const auto num_expert = weight.size(0);
    const auto out_feat = weight.size(1);
    const auto in_feat = weight.size(2);

    auto grad_input = grad_output.new_zeros({batch_size, in_feat});  // batch_size x in_feat
    auto grad_weight = grad_output.new_zeros({num_expert, out_feat, in_feat}); // num_expert x out_feat x in_feat
    
    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe1_cuda_backward", ([&] {
        moe1_cuda_forward_impl<scalar_t>(
            grad_output.data_ptr<scalar_t>(),
            gate.data_ptr<int>(),
            weight.data_ptr<scalar_t>(),
            grad_input.data_ptr<scalar_t>(),
            batch_size,
            out_feat,
            in_feat,
            num_expert,
            CUBLAS_OP_N
        );
    }));
    return {grad_input, grad_weight};
}

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
221
222

/*
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
223
int main() {
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
224
225
226
227
228
229
    typedef float data_t;
    size_t batch_size = 4096;
    size_t top_k = 2;
    size_t num_expert = 128;
    size_t in_feat = 1024;
    size_t out_feat = 4096;
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
230
	data_t *input, *weight;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
231
	data_t *output;
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
232
	size_t *gate;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
233

Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
234
235
	checkCudaErrors(cudaMalloc(&input, batch_size * in_feat * sizeof(data_t)));
	checkCudaErrors(cudaMalloc(&weight, num_expert * in_feat * out_feat * sizeof(data_t)));	
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
236
	checkCudaErrors(cudaMalloc(&output, batch_size * top_k * out_feat * sizeof(data_t)));
Jiezhong Qiu's avatar
Jiezhong Qiu committed
237
238
239
240
    checkCudaErrors(cudaMalloc(&gate, batch_size * top_k * sizeof(size_t)));
    
    size_t nt = 16;
    double tsum = 0, tmax = 0;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
241

Jiezhong Qiu's avatar
Jiezhong Qiu committed
242
243
244
245
246
247
    size_t *gate_host = new size_t[batch_size * top_k];
    for (size_t i=0; i<batch_size * top_k; ++i) {
        gate_host[i] = rand() % num_expert;
    } 
    checkCudaErrors(cudaMemcpy(gate, gate_host, batch_size * top_k * sizeof(size_t), cudaMemcpyHostToDevice));

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
248
    moe_first_linear_cuda_forward<data_t>(input, gate, weight, output, batch_size, top_k, in_feat, out_feat);
Jiezhong Qiu's avatar
Jiezhong Qiu committed
249
250
251
    
    for (size_t i=0; i<nt; ++i) {
        timestamp(start);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
252
		moe_first_linear_cuda_forward<data_t>(input, gate, weight, output, batch_size, top_k, in_feat, out_feat);
Jiezhong Qiu's avatar
Jiezhong Qiu committed
253
254
255
256
257
258
259
260
		timestamp(end);
		auto t = getDuration(start, end);
		tsum += t;
		if (t > tmax) tmax = t;
    }
    printf("Mean %.3lf us, max %.3lf us\n", tsum / nt * 1e6, tmax * 1e6);
	double tflops = (double)batch_size * top_k * in_feat * out_feat * nt * 2e-12 / tsum;
	printf("%.3lf TFLOPs\n", tflops);
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
261
262
}
*/