moe_cuda_kernel.cu 6.11 KB
Newer Older
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#include <cstdio>
#include <iostream>
#include <vector>

// CUDA runtime
#include <cuda.h>                                                                                             
#include <cuda_runtime.h>                                                                                                 
#include <cublas_v2.h>                                                                                                    
                                                                                                                            
// CUDA and CUBLAS functions                                                                                              
//#include <helper_functions.h>                                                                                             
#include <helper_cuda.h> 


typedef float data_t;
size_t batch_size = 4096;
size_t top_k = 2;
size_t num_expert = 128;
size_t in_feat = 512;
size_t out_feat = 2048;

#define CEIL(_x_,_y_) (((_x_)-1)/(_y_)+1)

template <typename scalar_t>
__global__
void generate_ptr_offset_kernel(size_t n, const scalar_t* base, size_t stride, const size_t* offset, const scalar_t** ptrs) {
	size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
	if (idx < n) {
		ptrs[idx] = base + stride * offset[idx];
	}
}

inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
                                  cublasOperation_t transa,
                                  cublasOperation_t transb,
                                  int m, int n, int k,
                                  const float           *alpha,
                                  const float           *Aarray[], int lda,
                                  const float           *Barray[], int ldb,
                                  const float           *beta,
                                  float           *Carray[], int ldc,
                                  int batchCount)
{
    return cublasSgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}

inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
                                  cublasOperation_t transa,
                                  cublasOperation_t transb,
                                  int m, int n, int k,
                                  const double           *alpha,
                                  const double           *Aarray[], int lda,
                                  const double           *Barray[], int ldb,
                                  const double           *beta,
                                  double           *Carray[], int ldc,
                                  int batchCount)
{
    return cublasDgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}

inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
                                  cublasOperation_t transa,
                                  cublasOperation_t transb,
                                  int m, int n, int k,
                                  const __half           *alpha,
                                  const __half           *Aarray[], int lda,
                                  const __half           *Barray[], int ldb,
                                  const __half           *beta,
                                  __half           *Carray[], int ldc,
                                  int batchCount)
{
    return cublasHgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}

template <typename scalar_t>
void moe_cuda_forward_impl(
        const scalar_t* input,
        const size_t* gate,
        const scalar_t* weight,
        scalar_t* output,
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
81
82
83
84
        const size_t batch_size,
        const size_t top_k,
        const size_t in_feat,
        const size_t out_feat) {
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    

    cublasHandle_t handle;
	cudaStream_t st;
	cudaStreamCreate(&st);
    checkCudaErrors(cublasCreate(&handle));
    checkCudaErrors(cublasSetStream(handle, st));

    // setup Aarray, Barray and Carray
	std::vector<const scalar_t*> aptrs;
    std::vector<scalar_t*> cptrs;
	
    const scalar_t **Aarray;
    const scalar_t **Barray;
    scalar_t **Carray;
	checkCudaErrors(cudaMalloc(&Aarray, batch_size * sizeof(const scalar_t*) * top_k));
    checkCudaErrors(cudaMalloc(&Barray, batch_size * sizeof(const scalar_t*) * top_k));
    checkCudaErrors(cudaMalloc(&Carray, batch_size * sizeof(scalar_t*) * top_k));

	for (size_t i=0; i<batch_size; ++i) {
        for (size_t k=0; k<top_k; ++k) {
            aptrs.push_back(input + in_feat * i);
            // bptrs.push_back(weight + out_feat * in_feat * gate[i * top_k + k]);
            cptrs.push_back(output + out_feat * (i * top_k + k));
        }
	}
	checkCudaErrors(cudaMemcpy(Aarray, aptrs.data(), batch_size * sizeof(const scalar_t*) * top_k, cudaMemcpyHostToDevice));
	// checkCudaErrors(cudaMemcpy(ptrs + batch_size * top_k, bptrs.data(), batch_size * sizeof(scalar_t*) * top_k, cudaMemcpyHostToDevice));
	checkCudaErrors(cudaMemcpy(Carray, cptrs.data(), batch_size * sizeof(scalar_t*) * top_k, cudaMemcpyHostToDevice));

	dim3 griddim(CEIL(batch_size * top_k, 256));
	dim3 blockdim(256);
    generate_ptr_offset_kernel<<<griddim, blockdim, 0, st>>>(batch_size * top_k, weight, out_feat * in_feat, gate, Barray);

    scalar_t alpha = 1, beta = 0;
	checkCudaErrors(cublasXgemmBatched(handle, 
			CUBLAS_OP_N,
			CUBLAS_OP_T,
			1, out_feat, in_feat,
			&alpha,
			Aarray, 1,
			Barray, out_feat,
			&beta,
			Carray, 1,
			batch_size));

	checkCudaErrors(cudaStreamSynchronize(st));
    checkCudaErrors(cudaStreamDestroy(st));
    checkCudaErrors(cublasDestroy(handle));
}


int main() {
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
138
	data_t *input, *weight;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
139
	data_t *output;
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
140
	size_t *gate;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
141

Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
142
143
	checkCudaErrors(cudaMalloc(&input, batch_size * in_feat * sizeof(data_t)));
	checkCudaErrors(cudaMalloc(&weight, num_expert * in_feat * out_feat * sizeof(data_t)));	
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
144
145
146
147
148
	checkCudaErrors(cudaMalloc(&output, batch_size * top_k * out_feat * sizeof(data_t)));
	checkCudaErrors(cudaMalloc(&gate, batch_size * top_k * sizeof(size_t)));

	moe_cuda_forward_impl<data_t>(input, gate, weight, output, batch_size, top_k, in_feat, out_feat);
}