moe_cuda_kernel.cu 7.48 KB
Newer Older
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
1
2
#include <torch/extension.h>
#include <torch/torch.h>
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
3
4
5
6
#include <cstdio>
#include <iostream>
#include <vector>

Jiezhong Qiu's avatar
Jiezhong Qiu committed
7

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
8
9
10
11
#include <cuda.h>
#include <cuda_runtime.h>
#include <cublas_v2.h>                                                                                          
#include <helper_cuda.h> 
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
12

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
13
// #include "timer.hh"
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
14
15
16
17
18

#define CEIL(_x_,_y_) (((_x_)-1)/(_y_)+1)

template <typename scalar_t>
__global__
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
19
void generate_ptr_offset_kernel(size_t n, const scalar_t* base, size_t stride, const int* offset, const scalar_t** ptrs) {
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
20
21
22
23
24
25
	size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
	if (idx < n) {
		ptrs[idx] = base + stride * offset[idx];
	}
}

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
26

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
                                  cublasOperation_t transa,
                                  cublasOperation_t transb,
                                  int m, int n, int k,
                                  const float           *alpha,
                                  const float           *Aarray[], int lda,
                                  const float           *Barray[], int ldb,
                                  const float           *beta,
                                  float           *Carray[], int ldc,
                                  int batchCount)
{
    return cublasSgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}

inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
                                  cublasOperation_t transa,
                                  cublasOperation_t transb,
                                  int m, int n, int k,
                                  const double           *alpha,
                                  const double           *Aarray[], int lda,
                                  const double           *Barray[], int ldb,
                                  const double           *beta,
                                  double           *Carray[], int ldc,
                                  int batchCount)
{
    return cublasDgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}

inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
                                  cublasOperation_t transa,
                                  cublasOperation_t transb,
                                  int m, int n, int k,
                                  const __half           *alpha,
                                  const __half           *Aarray[], int lda,
                                  const __half           *Barray[], int ldb,
                                  const __half           *beta,
                                  __half           *Carray[], int ldc,
                                  int batchCount)
{
    return cublasHgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
69

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
70
template <typename scalar_t>
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
71
void moe1_cuda_forward_impl(
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
72
        const scalar_t* input,
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
73
        const int* gate,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
74
75
        const scalar_t* weight,
        scalar_t* output,
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
76
77
78
79
        const size_t batch_size,
        const size_t top_k,
        const size_t in_feat,
        const size_t out_feat) {
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    
    cublasHandle_t handle;
	cudaStream_t st;
	cudaStreamCreate(&st);
    checkCudaErrors(cublasCreate(&handle));
    checkCudaErrors(cublasSetStream(handle, st));

    // setup Aarray, Barray and Carray
	std::vector<const scalar_t*> aptrs;
    std::vector<scalar_t*> cptrs;
	
    const scalar_t **Aarray;
    const scalar_t **Barray;
    scalar_t **Carray;
	checkCudaErrors(cudaMalloc(&Aarray, batch_size * sizeof(const scalar_t*) * top_k));
    checkCudaErrors(cudaMalloc(&Barray, batch_size * sizeof(const scalar_t*) * top_k));
    checkCudaErrors(cudaMalloc(&Carray, batch_size * sizeof(scalar_t*) * top_k));

	for (size_t i=0; i<batch_size; ++i) {
        for (size_t k=0; k<top_k; ++k) {
            aptrs.push_back(input + in_feat * i);
            // bptrs.push_back(weight + out_feat * in_feat * gate[i * top_k + k]);
            cptrs.push_back(output + out_feat * (i * top_k + k));
        }
	}
	checkCudaErrors(cudaMemcpy(Aarray, aptrs.data(), batch_size * sizeof(const scalar_t*) * top_k, cudaMemcpyHostToDevice));
	// checkCudaErrors(cudaMemcpy(ptrs + batch_size * top_k, bptrs.data(), batch_size * sizeof(scalar_t*) * top_k, cudaMemcpyHostToDevice));
	checkCudaErrors(cudaMemcpy(Carray, cptrs.data(), batch_size * sizeof(scalar_t*) * top_k, cudaMemcpyHostToDevice));

	dim3 griddim(CEIL(batch_size * top_k, 256));
	dim3 blockdim(256);
    generate_ptr_offset_kernel<<<griddim, blockdim, 0, st>>>(batch_size * top_k, weight, out_feat * in_feat, gate, Barray);

    scalar_t alpha = 1, beta = 0;
	checkCudaErrors(cublasXgemmBatched(handle, 
			CUBLAS_OP_N,
			CUBLAS_OP_T,
			1, out_feat, in_feat,
			&alpha,
			Aarray, 1,
			Barray, out_feat,
			&beta,
			Carray, 1,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
123
			batch_size * top_k));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
124
125
126
127
128
129
130

	checkCudaErrors(cudaStreamSynchronize(st));
    checkCudaErrors(cudaStreamDestroy(st));
    checkCudaErrors(cublasDestroy(handle));
}


Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
std::vector<torch::Tensor> moe1_cuda_forward(
        torch::Tensor input,
        torch::Tensor gate,
        torch::Tensor weight) {
    const auto batch_size = input.size(0);
    const auto top_k = gate.size(1);
    const auto num_expert = weight.size(0);
    const auto out_feat = weight.size(1);
    const auto in_feat = weight.size(2);
            
    // printf("b=%ld, expert=%ld, in_feat (d_model)=%ld, out_feat (d_ffn)=%ld, topk=%ld\n", batch_size, num_expert, in_feat, out_feat, top_k);
    auto output = input.new_zeros({batch_size, top_k, out_feat});
    
    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe1_forward_cuda", ([&] {
                moe1_cuda_forward_impl<scalar_t>(
                    input.data_ptr<scalar_t>(),
                    gate.data_ptr<int>(),
                    weight.data_ptr<scalar_t>(),
                    output.data_ptr<scalar_t>(),
                    batch_size,
                    top_k,
                    in_feat,
                    out_feat
                );
    }));
    
    return {output, };           
}


/*
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
162
int main() {
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
163
164
165
166
167
168
    typedef float data_t;
    size_t batch_size = 4096;
    size_t top_k = 2;
    size_t num_expert = 128;
    size_t in_feat = 1024;
    size_t out_feat = 4096;
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
169
	data_t *input, *weight;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
170
	data_t *output;
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
171
	size_t *gate;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
172

Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
173
174
	checkCudaErrors(cudaMalloc(&input, batch_size * in_feat * sizeof(data_t)));
	checkCudaErrors(cudaMalloc(&weight, num_expert * in_feat * out_feat * sizeof(data_t)));	
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
175
	checkCudaErrors(cudaMalloc(&output, batch_size * top_k * out_feat * sizeof(data_t)));
Jiezhong Qiu's avatar
Jiezhong Qiu committed
176
177
178
179
    checkCudaErrors(cudaMalloc(&gate, batch_size * top_k * sizeof(size_t)));
    
    size_t nt = 16;
    double tsum = 0, tmax = 0;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
180

Jiezhong Qiu's avatar
Jiezhong Qiu committed
181
182
183
184
185
186
    size_t *gate_host = new size_t[batch_size * top_k];
    for (size_t i=0; i<batch_size * top_k; ++i) {
        gate_host[i] = rand() % num_expert;
    } 
    checkCudaErrors(cudaMemcpy(gate, gate_host, batch_size * top_k * sizeof(size_t), cudaMemcpyHostToDevice));

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
187
    moe_first_linear_cuda_forward<data_t>(input, gate, weight, output, batch_size, top_k, in_feat, out_feat);
Jiezhong Qiu's avatar
Jiezhong Qiu committed
188
189
190
    
    for (size_t i=0; i<nt; ++i) {
        timestamp(start);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
191
		moe_first_linear_cuda_forward<data_t>(input, gate, weight, output, batch_size, top_k, in_feat, out_feat);
Jiezhong Qiu's avatar
Jiezhong Qiu committed
192
193
194
195
196
197
198
199
		timestamp(end);
		auto t = getDuration(start, end);
		tsum += t;
		if (t > tmax) tmax = t;
    }
    printf("Mean %.3lf us, max %.3lf us\n", tsum / nt * 1e6, tmax * 1e6);
	double tflops = (double)batch_size * top_k * in_feat * out_feat * nt * 2e-12 / tsum;
	printf("%.3lf TFLOPs\n", tflops);
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
200
201
}
*/