moe_cuda_kernel.cu 12.6 KB
Newer Older
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
1
2
#include <torch/extension.h>
#include <torch/torch.h>
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
3
4
5
#include <cstdio>
#include <iostream>
#include <vector>
Jiezhong Qiu's avatar
Jiezhong Qiu committed
6
#include <cassert>
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
7

Jiezhong Qiu's avatar
Jiezhong Qiu committed
8

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
9
10
11
12
#include <cuda.h>
#include <cuda_runtime.h>
#include <cublas_v2.h>                                                                                          
#include <helper_cuda.h> 
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
13

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
14
// #include "timer.hh"
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
15
16
17

#define CEIL(_x_,_y_) (((_x_)-1)/(_y_)+1)

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

class Helper {
public:
    Helper(const size_t num_expert_) : num_expert(num_expert_) {
        streams = new cudaStream_t[num_expert];
        checkCudaErrors(cublasCreate(&handle));
        for (size_t i=0; i<num_expert; ++i) {
            checkCudaErrors(cudaStreamCreate(streams+i));
        }
    }
    ~Helper() {
        for (size_t i=0; i<num_expert; ++i) {
            checkCudaErrors(cudaStreamDestroy(*(streams+i)));
        }
        checkCudaErrors(cublasDestroy(handle));
    }
    const size_t num_expert;
    cublasHandle_t handle;
    cudaStream_t* streams;
}; 

Helper* helper = NULL;
Helper* getHelper(const size_t num_expert) { 
    if (!helper) {
        helper = new Helper(num_expert);        
    }
Jiezhong Qiu's avatar
Jiezhong Qiu committed
44
    assert(helper->num_expert == num_expert);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
45
46
47
48
    return helper;
}


Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
49
50
template <typename scalar_t>
__global__
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
51
void generate_ptr_offset_kernel(size_t n, const scalar_t* base, size_t stride, const int* offset, const scalar_t** ptrs) {
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
52
53
54
55
56
57
	size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
	if (idx < n) {
		ptrs[idx] = base + stride * offset[idx];
	}
}

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
58

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
59
60
61
62
63
64
65
66
67
inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
                                  cublasOperation_t transa,
                                  cublasOperation_t transb,
                                  int m, int n, int k,
                                  const float           *alpha,
                                  const float           *Aarray[], int lda,
                                  const float           *Barray[], int ldb,
                                  const float           *beta,
                                  float           *Carray[], int ldc,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
68
                                  int batchCount) {
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
69
70
71
72
73
74
75
76
77
78
79
80
    return cublasSgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}

inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
                                  cublasOperation_t transa,
                                  cublasOperation_t transb,
                                  int m, int n, int k,
                                  const double           *alpha,
                                  const double           *Aarray[], int lda,
                                  const double           *Barray[], int ldb,
                                  const double           *beta,
                                  double           *Carray[], int ldc,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
81
                                  int batchCount) {
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
82
83
84
85
86
87
88
89
90
91
92
93
    return cublasDgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}

inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
                                  cublasOperation_t transa,
                                  cublasOperation_t transb,
                                  int m, int n, int k,
                                  const __half           *alpha,
                                  const __half           *Aarray[], int lda,
                                  const __half           *Barray[], int ldb,
                                  const __half           *beta,
                                  __half           *Carray[], int ldc,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
94
                                  int batchCount) {
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
95
96
97
    return cublasHgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
98

Jiezhong Qiu's avatar
Jiezhong Qiu committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
inline cublasStatus_t cublasXgemm(cublasHandle_t handle,
                                cublasOperation_t transa, cublasOperation_t transb,
                                int m, int n, int k,
                                const float           *alpha,
                                const float           *A, int lda,
                                const float           *B, int ldb,
                                const float           *beta,
                                float           *C, int ldc) {
    return cublasSgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
}

inline cublasStatus_t cublasXgemm(cublasHandle_t handle,
                                cublasOperation_t transa, cublasOperation_t transb,
                                int m, int n, int k,
                                const double          *alpha,
                                const double          *A, int lda,
                                const double          *B, int ldb,
                                const double          *beta,
                                double          *C, int ldc) {
    return cublasDgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
}

inline cublasStatus_t cublasXgemm(cublasHandle_t handle,
                                cublasOperation_t transa, cublasOperation_t transb,
                                int m, int n, int k,
                                const __half *alpha,
                                const __half *A, int lda,
                                const __half *B, int ldb,
                                const __half *beta,
                                __half *C, int ldc) {
    return cublasHgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
}

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
132
template <typename scalar_t>
Jiezhong Qiu's avatar
Jiezhong Qiu committed
133
void moe_cuda_forward_impl(
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
134
        const scalar_t* input,
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
135
        const int* gate,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
136
137
        const scalar_t* weight,
        scalar_t* output,
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
138
139
        const size_t batch_size,
        const size_t in_feat,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
140
141
142
        const size_t out_feat,
        const size_t num_expert,
        cublasOperation_t transb) {
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
143

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
144
145
146
    Helper* h = getHelper(num_expert);

    checkCudaErrors(cublasSetStream(h->handle, *(h->streams)));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
147
148

    // setup Aarray, Barray and Carray
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
149
	std::vector<const scalar_t*> aptrs;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
150
151
152
153
154
    std::vector<scalar_t*> cptrs;
	
    const scalar_t **Aarray;
    const scalar_t **Barray;
    scalar_t **Carray;
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
155
156
157
	checkCudaErrors(cudaMalloc(&Aarray, batch_size * sizeof(const scalar_t*)));
    checkCudaErrors(cudaMalloc(&Barray, batch_size * sizeof(const scalar_t*)));
    checkCudaErrors(cudaMalloc(&Carray, batch_size * sizeof(scalar_t*)));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
158
159

	for (size_t i=0; i<batch_size; ++i) {
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
160
161
        aptrs.push_back(input + in_feat * i);
        cptrs.push_back(output + out_feat * i);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
162
	}
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
163
	checkCudaErrors(cudaMemcpy(Aarray, aptrs.data(), batch_size * sizeof(const scalar_t*), cudaMemcpyHostToDevice));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
164
	// checkCudaErrors(cudaMemcpy(ptrs + batch_size * top_k, bptrs.data(), batch_size * sizeof(scalar_t*) * top_k, cudaMemcpyHostToDevice));
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
165
	checkCudaErrors(cudaMemcpy(Carray, cptrs.data(), batch_size * sizeof(scalar_t*), cudaMemcpyHostToDevice));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
166

Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
167
	dim3 griddim(CEIL(batch_size, 256));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
168
	dim3 blockdim(256);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
169
    generate_ptr_offset_kernel<<<griddim, blockdim, 0, *(h->streams)>>>(batch_size, weight, out_feat * in_feat, gate, Barray);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
170
171

    scalar_t alpha = 1, beta = 0;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
172
	checkCudaErrors(cublasXgemmBatched(h->handle, 
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
173
			CUBLAS_OP_N,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
174
			transb,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
175
176
177
			1, out_feat, in_feat,
			&alpha,
			Aarray, 1,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
178
			Barray, (transb == CUBLAS_OP_T) ? out_feat : in_feat,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
179
180
			&beta,
			Carray, 1,
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
181
			batch_size));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
182

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
183
	checkCudaErrors(cudaStreamSynchronize(*(h->streams)));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
184
185
}

Jiezhong Qiu's avatar
Jiezhong Qiu committed
186
187
188
189
190
191
192
193
194
template <typename scalar_t>
void moe_cuda_grad_weight(
        const scalar_t* input,
        const int* gate,
        const scalar_t* grad_output,
        scalar_t* grad_weight, // [num_expert x out_feat x in_feat]
        const size_t batch_size,
        const size_t in_feat,
        const size_t out_feat,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
195
        const size_t num_expert) {
Jiezhong Qiu's avatar
Jiezhong Qiu committed
196
197
198
199
200
201
202
203

    Helper* h = getHelper(num_expert);
    
    int* gate_host = new int[batch_size];
    scalar_t alpha = 1, beta = 1;
    checkCudaErrors(cudaMemcpy(gate_host, gate, batch_size * sizeof(int), cudaMemcpyDeviceToHost));
    for (size_t i=0; i<batch_size; ++i) {
        checkCudaErrors(cublasSetStream(h->handle, *(h->streams + gate_host[i])));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
204
        checkCudaErrors(cublasXgemm(h->handle,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
205
            CUBLAS_OP_N, 
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
206
            CUBLAS_OP_T,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
207
208
209
210
211
212
213
            out_feat, 
            in_feat, 
            1,
            &alpha,
            grad_output + i * out_feat,
            out_feat,
            input + i * in_feat,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
214
            in_feat,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
215
216
217
218
            &beta,
            grad_weight + gate_host[i] * out_feat * in_feat,
            out_feat));
    }
Jiezhong Qiu's avatar
Jiezhong Qiu committed
219
220
221
    for (size_t i=0; i<num_expert; ++i) {
        checkCudaErrors(cudaStreamSynchronize(*(h->streams + i)));
    }
Jiezhong Qiu's avatar
Jiezhong Qiu committed
222
223
    delete[] gate_host;
}
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
224

Jiezhong Qiu's avatar
Jiezhong Qiu committed
225
std::vector<torch::Tensor> moe_cuda_forward(
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
226
227
228
229
230
231
232
233
        torch::Tensor input,
        torch::Tensor gate,
        torch::Tensor weight) {
    const auto batch_size = input.size(0);
    const auto num_expert = weight.size(0);
    const auto out_feat = weight.size(1);
    const auto in_feat = weight.size(2);
            
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
234
    printf("[forward] b=%ld, expert=%ld, in_feat (d_model)=%ld, out_feat (d_ffn)=%ld\n", batch_size, num_expert, in_feat, out_feat);
Jiezhong Qiu's avatar
topk=1  
Jiezhong Qiu committed
235
    auto output = input.new_zeros({batch_size, out_feat});
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
236
    
Jiezhong Qiu's avatar
Jiezhong Qiu committed
237
238
    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe_forward_cuda", ([&] {
                moe_cuda_forward_impl<scalar_t>(
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
239
240
241
242
243
244
                    input.data_ptr<scalar_t>(),
                    gate.data_ptr<int>(),
                    weight.data_ptr<scalar_t>(),
                    output.data_ptr<scalar_t>(),
                    batch_size,
                    in_feat,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
245
246
247
                    out_feat,
                    num_expert,
                    CUBLAS_OP_T
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
248
249
250
251
252
253
                );
    }));
    
    return {output, };           
}

Jiezhong Qiu's avatar
Jiezhong Qiu committed
254
std::vector<torch::Tensor> moe_cuda_backward(
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
255
256
257
258
259
260
261
262
263
    torch::Tensor grad_output, // [batch_size x out_feat]
    torch::Tensor input, // [batch_size x out_feat]
    torch::Tensor gate,  // [batch_size]
    torch::Tensor weight // [num_expert x out_feat x in_feat]
) {
    const auto batch_size = input.size(0);
    const auto num_expert = weight.size(0);
    const auto out_feat = weight.size(1);
    const auto in_feat = weight.size(2);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
264
    printf("[backward] b=%ld, expert=%ld, in_feat (d_model)=%ld, out_feat (d_ffn)=%ld\n", batch_size, num_expert, in_feat, out_feat);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
265
266
267

    auto grad_input = grad_output.new_zeros({batch_size, in_feat});  // batch_size x in_feat
    auto grad_weight = grad_output.new_zeros({num_expert, out_feat, in_feat}); // num_expert x out_feat x in_feat
Jiezhong Qiu's avatar
Jiezhong Qiu committed
268
269
270
271

    // grad_input is easy to compute, exactly the same as forward
    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe_cuda_backward", ([&] {
        moe_cuda_forward_impl<scalar_t>(
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
272
273
274
275
276
277
278
279
280
281
282
            grad_output.data_ptr<scalar_t>(),
            gate.data_ptr<int>(),
            weight.data_ptr<scalar_t>(),
            grad_input.data_ptr<scalar_t>(),
            batch_size,
            out_feat,
            in_feat,
            num_expert,
            CUBLAS_OP_N
        );
    }));
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
283
284
285
286
287
288
289
290
291

    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe_cuda_backward", ([&] {
        moe_cuda_grad_weight<scalar_t>(
            input.data_ptr<scalar_t>(),
            gate.data_ptr<int>(),
            grad_output.data_ptr<scalar_t>(),
            grad_weight.data_ptr<scalar_t>(),
            batch_size,
            in_feat,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
292
            out_feat,
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
293
294
295
296
            num_expert
        );
    }));

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
297
298
299
    return {grad_input, grad_weight};
}

Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
300
301

/*
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
302
int main() {
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
303
304
305
306
307
308
    typedef float data_t;
    size_t batch_size = 4096;
    size_t top_k = 2;
    size_t num_expert = 128;
    size_t in_feat = 1024;
    size_t out_feat = 4096;
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
309
	data_t *input, *weight;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
310
	data_t *output;
Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
311
	size_t *gate;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
312

Jiezhong Qiu's avatar
updatre  
Jiezhong Qiu committed
313
314
	checkCudaErrors(cudaMalloc(&input, batch_size * in_feat * sizeof(data_t)));
	checkCudaErrors(cudaMalloc(&weight, num_expert * in_feat * out_feat * sizeof(data_t)));	
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
315
	checkCudaErrors(cudaMalloc(&output, batch_size * top_k * out_feat * sizeof(data_t)));
Jiezhong Qiu's avatar
Jiezhong Qiu committed
316
317
318
319
    checkCudaErrors(cudaMalloc(&gate, batch_size * top_k * sizeof(size_t)));
    
    size_t nt = 16;
    double tsum = 0, tmax = 0;
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
320

Jiezhong Qiu's avatar
Jiezhong Qiu committed
321
322
323
324
325
326
    size_t *gate_host = new size_t[batch_size * top_k];
    for (size_t i=0; i<batch_size * top_k; ++i) {
        gate_host[i] = rand() % num_expert;
    } 
    checkCudaErrors(cudaMemcpy(gate, gate_host, batch_size * top_k * sizeof(size_t), cudaMemcpyHostToDevice));

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
327
    moe_first_linear_cuda_forward<data_t>(input, gate, weight, output, batch_size, top_k, in_feat, out_feat);
Jiezhong Qiu's avatar
Jiezhong Qiu committed
328
329
330
    
    for (size_t i=0; i<nt; ++i) {
        timestamp(start);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
331
		moe_first_linear_cuda_forward<data_t>(input, gate, weight, output, batch_size, top_k, in_feat, out_feat);
Jiezhong Qiu's avatar
Jiezhong Qiu committed
332
333
334
335
336
337
338
339
		timestamp(end);
		auto t = getDuration(start, end);
		tsum += t;
		if (t > tmax) tmax = t;
    }
    printf("Mean %.3lf us, max %.3lf us\n", tsum / nt * 1e6, tmax * 1e6);
	double tflops = (double)batch_size * top_k * in_feat * out_feat * nt * 2e-12 / tsum;
	printf("%.3lf TFLOPs\n", tflops);
Jiezhong Qiu's avatar
updarte  
Jiezhong Qiu committed
340
341
}
*/