utils.py 7.25 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

Myle Ott's avatar
Myle Ott committed
8
import argparse
Myle Ott's avatar
Myle Ott committed
9
10
import torch

alexeib's avatar
alexeib committed
11
from fairseq import utils
Myle Ott's avatar
Myle Ott committed
12
13
from fairseq.data import Dictionary
from fairseq.data.language_pair_dataset import collate
Myle Ott's avatar
Myle Ott committed
14
15
16
17
18
from fairseq.models import (
    FairseqEncoder,
    FairseqIncrementalDecoder,
    FairseqModel,
)
Myle Ott's avatar
Myle Ott committed
19
from fairseq.tasks import FairseqTask
Myle Ott's avatar
Myle Ott committed
20
21
22


def dummy_dictionary(vocab_size, prefix='token_'):
Myle Ott's avatar
Myle Ott committed
23
    d = Dictionary()
Myle Ott's avatar
Myle Ott committed
24
25
26
    for i in range(vocab_size):
        token = prefix + str(i)
        d.add_symbol(token)
Myle Ott's avatar
Myle Ott committed
27
    d.finalize(padding_factor=1)  # don't add extra padding symbols
Myle Ott's avatar
Myle Ott committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
    return d


def dummy_dataloader(
    samples,
    padding_idx=1,
    eos_idx=2,
    batch_size=None,
):
    if batch_size is None:
        batch_size = len(samples)

    # add any missing data to samples
    for i, sample in enumerate(samples):
        if 'id' not in sample:
            sample['id'] = i

    # create dataloader
    dataset = TestDataset(samples)
    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
Myle Ott's avatar
Myle Ott committed
50
        collate_fn=(lambda samples: collate(samples, padding_idx, eos_idx)),
Myle Ott's avatar
Myle Ott committed
51
52
53
54
    )
    return iter(dataloader)


Myle Ott's avatar
Myle Ott committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
def sequence_generator_setup():
    # construct dummy dictionary
    d = dummy_dictionary(vocab_size=2)

    eos = d.eos()
    w1 = 4
    w2 = 5

    # construct source data
    src_tokens = torch.LongTensor([[w1, w2, eos], [w1, w2, eos]])
    src_lengths = torch.LongTensor([2, 2])

    args = argparse.Namespace()
    unk = 0.
    args.beam_probs = [
        # step 0:
        torch.FloatTensor([
            # eos      w1   w2
            # sentence 1:
            [0.0, unk, 0.9, 0.1],  # beam 1
            [0.0, unk, 0.9, 0.1],  # beam 2
            # sentence 2:
            [0.0, unk, 0.7, 0.3],
            [0.0, unk, 0.7, 0.3],
        ]),
        # step 1:
        torch.FloatTensor([
            # eos      w1   w2       prefix
            # sentence 1:
            [1.0, unk, 0.0, 0.0],  # w1: 0.9  (emit: w1 <eos>: 0.9*1.0)
            [0.0, unk, 0.9, 0.1],  # w2: 0.1
            # sentence 2:
            [0.25, unk, 0.35, 0.4],  # w1: 0.7  (don't emit: w1 <eos>: 0.7*0.25)
            [0.00, unk, 0.10, 0.9],  # w2: 0.3
        ]),
        # step 2:
        torch.FloatTensor([
            # eos      w1   w2       prefix
            # sentence 1:
            [0.0, unk, 0.1, 0.9],  # w2 w1: 0.1*0.9
            [0.6, unk, 0.2, 0.2],  # w2 w2: 0.1*0.1  (emit: w2 w2 <eos>: 0.1*0.1*0.6)
            # sentence 2:
            [0.60, unk, 0.4, 0.00],  # w1 w2: 0.7*0.4  (emit: w1 w2 <eos>: 0.7*0.4*0.6)
            [0.01, unk, 0.0, 0.99],  # w2 w2: 0.3*0.9
        ]),
        # step 3:
        torch.FloatTensor([
            # eos      w1   w2       prefix
            # sentence 1:
            [1.0, unk, 0.0, 0.0],  # w2 w1 w2: 0.1*0.9*0.9  (emit: w2 w1 w2 <eos>: 0.1*0.9*0.9*1.0)
            [1.0, unk, 0.0, 0.0],  # w2 w1 w1: 0.1*0.9*0.1  (emit: w2 w1 w1 <eos>: 0.1*0.9*0.1*1.0)
            # sentence 2:
            [0.1, unk, 0.5, 0.4],  # w2 w2 w2: 0.3*0.9*0.99  (emit: w2 w2 w2 <eos>: 0.3*0.9*0.99*0.1)
            [1.0, unk, 0.0, 0.0],  # w1 w2 w1: 0.7*0.4*0.4  (emit: w1 w2 w1 <eos>: 0.7*0.4*0.4*1.0)
        ]),
    ]

    task = TestTranslationTask.setup_task(args, d, d)
    model = task.build_model(args)
    tgt_dict = task.target_dictionary

    return tgt_dict, w1, w2, src_tokens, src_lengths, model


Myle Ott's avatar
Myle Ott committed
119
120
121
122
123
124
125
126
127
128
129
130
131
class TestDataset(torch.utils.data.Dataset):

    def __init__(self, data):
        super().__init__()
        self.data = data

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return len(self.data)


Myle Ott's avatar
Myle Ott committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
class TestTranslationTask(FairseqTask):

    def __init__(self, args, src_dict, tgt_dict, model):
        super().__init__(args)
        self.src_dict = src_dict
        self.tgt_dict = tgt_dict
        self.model = model

    @classmethod
    def setup_task(cls, args, src_dict=None, tgt_dict=None, model=None):
        return cls(args, src_dict, tgt_dict, model)

    def build_model(self, args):
        return TestModel.build_model(args, self)

    @property
    def source_dictionary(self):
        return self.src_dict

    @property
    def target_dictionary(self):
        return self.tgt_dict


Myle Ott's avatar
Myle Ott committed
156
157
158
159
160
class TestModel(FairseqModel):
    def __init__(self, encoder, decoder):
        super().__init__(encoder, decoder)

    @classmethod
Myle Ott's avatar
Myle Ott committed
161
162
163
    def build_model(cls, args, task):
        encoder = TestEncoder(args, task.source_dictionary)
        decoder = TestIncrementalDecoder(args, task.target_dictionary)
Myle Ott's avatar
Myle Ott committed
164
165
166
167
168
169
170
171
172
173
174
        return cls(encoder, decoder)


class TestEncoder(FairseqEncoder):
    def __init__(self, args, dictionary):
        super().__init__(dictionary)
        self.args = args

    def forward(self, src_tokens, src_lengths):
        return src_tokens

175
176
177
    def reorder_encoder_out(self, encoder_out, new_order):
        return encoder_out.index_select(0, new_order)

Myle Ott's avatar
Myle Ott committed
178
179
180
181

class TestIncrementalDecoder(FairseqIncrementalDecoder):
    def __init__(self, args, dictionary):
        super().__init__(dictionary)
182
        assert hasattr(args, 'beam_probs') or hasattr(args, 'probs')
Myle Ott's avatar
Myle Ott committed
183
184
185
        args.max_decoder_positions = getattr(args, 'max_decoder_positions', 100)
        self.args = args

186
187
    def forward(self, prev_output_tokens, encoder_out, incremental_state=None):
        if incremental_state is not None:
Myle Ott's avatar
Myle Ott committed
188
189
190
191
192
193
194
            prev_output_tokens = prev_output_tokens[:, -1:]
        bbsz = prev_output_tokens.size(0)
        vocab = len(self.dictionary)
        src_len = encoder_out.size(1)
        tgt_len = prev_output_tokens.size(1)

        # determine number of steps
195
        if incremental_state is not None:
Myle Ott's avatar
Myle Ott committed
196
            # cache step number
197
            step = utils.get_incremental_state(self, incremental_state, 'step')
Myle Ott's avatar
Myle Ott committed
198
199
            if step is None:
                step = 0
200
            utils.set_incremental_state(self, incremental_state, 'step', step + 1)
Myle Ott's avatar
Myle Ott committed
201
202
203
204
205
            steps = [step]
        else:
            steps = list(range(tgt_len))

        # define output in terms of raw probs
206
207
208
209
210
211
212
213
214
215
216
217
218
        if hasattr(self.args, 'probs'):
            assert self.args.probs.dim() == 3, \
                'expected probs to have size bsz*steps*vocab'
            probs = self.args.probs.index_select(1, torch.LongTensor(steps))
        else:
            probs = torch.FloatTensor(bbsz, len(steps), vocab).zero_()
            for i, step in enumerate(steps):
                # args.beam_probs gives the probability for every vocab element,
                # starting with eos, then unknown, and then the rest of the vocab
                if step < len(self.args.beam_probs):
                    probs[:, i, self.dictionary.eos():] = self.args.beam_probs[step]
                else:
                    probs[:, i, self.dictionary.eos()] = 1.0
Myle Ott's avatar
Myle Ott committed
219
220

        # random attention
221
        attn = torch.rand(bbsz, tgt_len, src_len)
Myle Ott's avatar
Myle Ott committed
222

Myle Ott's avatar
Myle Ott committed
223
        return probs, attn
Myle Ott's avatar
Myle Ott committed
224

alexeib's avatar
alexeib committed
225
    def get_normalized_probs(self, net_output, log_probs, _):
Myle Ott's avatar
Myle Ott committed
226
        # the decoder returns probabilities directly
Myle Ott's avatar
Myle Ott committed
227
        probs = net_output[0]
Myle Ott's avatar
Myle Ott committed
228
        if log_probs:
Myle Ott's avatar
Myle Ott committed
229
            return probs.log()
Myle Ott's avatar
Myle Ott committed
230
        else:
Myle Ott's avatar
Myle Ott committed
231
            return probs
Myle Ott's avatar
Myle Ott committed
232
233
234

    def max_positions(self):
        return self.args.max_decoder_positions