utils.py 4.39 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

import torch
from torch.autograd import Variable

11
from fairseq import data, dictionary, utils
Myle Ott's avatar
Myle Ott committed
12
13
14
15
16
17
18
19
20
21
22
23
from fairseq.models import (
    FairseqEncoder,
    FairseqIncrementalDecoder,
    FairseqModel,
)


def dummy_dictionary(vocab_size, prefix='token_'):
    d = dictionary.Dictionary()
    for i in range(vocab_size):
        token = prefix + str(i)
        d.add_symbol(token)
Myle Ott's avatar
Myle Ott committed
24
    d.finalize(padding_factor=1)  # don't add extra padding symbols
Myle Ott's avatar
Myle Ott committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    return d


def dummy_dataloader(
    samples,
    padding_idx=1,
    eos_idx=2,
    batch_size=None,
):
    if batch_size is None:
        batch_size = len(samples)

    # add any missing data to samples
    for i, sample in enumerate(samples):
        if 'id' not in sample:
            sample['id'] = i

    # create dataloader
    dataset = TestDataset(samples)
    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
        collate_fn=(
            lambda samples: data.LanguagePairDataset.collate(
                samples,
                padding_idx,
                eos_idx,
            )
        ),
    )
    return iter(dataloader)


class TestDataset(torch.utils.data.Dataset):

    def __init__(self, data):
        super().__init__()
        self.data = data

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return len(self.data)


class TestModel(FairseqModel):
    def __init__(self, encoder, decoder):
        super().__init__(encoder, decoder)

    @classmethod
    def build_model(cls, args, src_dict, dst_dict):
        encoder = TestEncoder(args, src_dict)
        decoder = TestIncrementalDecoder(args, dst_dict)
        return cls(encoder, decoder)


class TestEncoder(FairseqEncoder):
    def __init__(self, args, dictionary):
        super().__init__(dictionary)
        self.args = args

    def forward(self, src_tokens, src_lengths):
        return src_tokens


class TestIncrementalDecoder(FairseqIncrementalDecoder):
    def __init__(self, args, dictionary):
        super().__init__(dictionary)
94
        assert hasattr(args, 'beam_probs') or hasattr(args, 'probs')
Myle Ott's avatar
Myle Ott committed
95
96
97
        args.max_decoder_positions = getattr(args, 'max_decoder_positions', 100)
        self.args = args

98
99
    def forward(self, prev_output_tokens, encoder_out, incremental_state=None):
        if incremental_state is not None:
Myle Ott's avatar
Myle Ott committed
100
101
102
103
104
105
106
            prev_output_tokens = prev_output_tokens[:, -1:]
        bbsz = prev_output_tokens.size(0)
        vocab = len(self.dictionary)
        src_len = encoder_out.size(1)
        tgt_len = prev_output_tokens.size(1)

        # determine number of steps
107
        if incremental_state is not None:
Myle Ott's avatar
Myle Ott committed
108
            # cache step number
109
            step = utils.get_incremental_state(self, incremental_state, 'step')
Myle Ott's avatar
Myle Ott committed
110
111
            if step is None:
                step = 0
112
            utils.set_incremental_state(self, incremental_state, 'step', step + 1)
Myle Ott's avatar
Myle Ott committed
113
114
115
116
117
            steps = [step]
        else:
            steps = list(range(tgt_len))

        # define output in terms of raw probs
118
119
120
121
122
123
124
125
126
127
128
129
130
        if hasattr(self.args, 'probs'):
            assert self.args.probs.dim() == 3, \
                'expected probs to have size bsz*steps*vocab'
            probs = self.args.probs.index_select(1, torch.LongTensor(steps))
        else:
            probs = torch.FloatTensor(bbsz, len(steps), vocab).zero_()
            for i, step in enumerate(steps):
                # args.beam_probs gives the probability for every vocab element,
                # starting with eos, then unknown, and then the rest of the vocab
                if step < len(self.args.beam_probs):
                    probs[:, i, self.dictionary.eos():] = self.args.beam_probs[step]
                else:
                    probs[:, i, self.dictionary.eos()] = 1.0
Myle Ott's avatar
Myle Ott committed
131
132
133
134
135
136
137
138

        # random attention
        attn = torch.rand(bbsz, src_len, tgt_len)

        return Variable(probs), Variable(attn)

    def get_normalized_probs(self, net_output, log_probs):
        # the decoder returns probabilities directly
Myle Ott's avatar
Myle Ott committed
139
        probs = net_output[0]
Myle Ott's avatar
Myle Ott committed
140
        if log_probs:
Myle Ott's avatar
Myle Ott committed
141
            return probs.log()
Myle Ott's avatar
Myle Ott committed
142
        else:
Myle Ott's avatar
Myle Ott committed
143
            return probs
Myle Ott's avatar
Myle Ott committed
144
145
146

    def max_positions(self):
        return self.args.max_decoder_positions