"vscode:/vscode.git/clone" did not exist on "a88e7f7e2861016c467d49227f7de630c427922f"
utils.py 5.1 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

import torch
from torch.autograd import Variable

alexeib's avatar
alexeib committed
11
from fairseq import utils
Myle Ott's avatar
Myle Ott committed
12
13
from fairseq.data import Dictionary
from fairseq.data.language_pair_dataset import collate
Myle Ott's avatar
Myle Ott committed
14
15
16
17
18
from fairseq.models import (
    FairseqEncoder,
    FairseqIncrementalDecoder,
    FairseqModel,
)
Myle Ott's avatar
Myle Ott committed
19
from fairseq.tasks import FairseqTask
Myle Ott's avatar
Myle Ott committed
20
21
22


def dummy_dictionary(vocab_size, prefix='token_'):
Myle Ott's avatar
Myle Ott committed
23
    d = Dictionary()
Myle Ott's avatar
Myle Ott committed
24
25
26
    for i in range(vocab_size):
        token = prefix + str(i)
        d.add_symbol(token)
Myle Ott's avatar
Myle Ott committed
27
    d.finalize(padding_factor=1)  # don't add extra padding symbols
Myle Ott's avatar
Myle Ott committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
    return d


def dummy_dataloader(
    samples,
    padding_idx=1,
    eos_idx=2,
    batch_size=None,
):
    if batch_size is None:
        batch_size = len(samples)

    # add any missing data to samples
    for i, sample in enumerate(samples):
        if 'id' not in sample:
            sample['id'] = i

    # create dataloader
    dataset = TestDataset(samples)
    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
Myle Ott's avatar
Myle Ott committed
50
        collate_fn=(lambda samples: collate(samples, padding_idx, eos_idx)),
Myle Ott's avatar
Myle Ott committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    )
    return iter(dataloader)


class TestDataset(torch.utils.data.Dataset):

    def __init__(self, data):
        super().__init__()
        self.data = data

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return len(self.data)


Myle Ott's avatar
Myle Ott committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
class TestTranslationTask(FairseqTask):

    def __init__(self, args, src_dict, tgt_dict, model):
        super().__init__(args)
        self.src_dict = src_dict
        self.tgt_dict = tgt_dict
        self.model = model

    @classmethod
    def setup_task(cls, args, src_dict=None, tgt_dict=None, model=None):
        return cls(args, src_dict, tgt_dict, model)

    def build_model(self, args):
        return TestModel.build_model(args, self)

    @property
    def source_dictionary(self):
        return self.src_dict

    @property
    def target_dictionary(self):
        return self.tgt_dict


Myle Ott's avatar
Myle Ott committed
92
93
94
95
96
class TestModel(FairseqModel):
    def __init__(self, encoder, decoder):
        super().__init__(encoder, decoder)

    @classmethod
Myle Ott's avatar
Myle Ott committed
97
98
99
    def build_model(cls, args, task):
        encoder = TestEncoder(args, task.source_dictionary)
        decoder = TestIncrementalDecoder(args, task.target_dictionary)
Myle Ott's avatar
Myle Ott committed
100
101
102
103
104
105
106
107
108
109
110
        return cls(encoder, decoder)


class TestEncoder(FairseqEncoder):
    def __init__(self, args, dictionary):
        super().__init__(dictionary)
        self.args = args

    def forward(self, src_tokens, src_lengths):
        return src_tokens

111
112
113
    def reorder_encoder_out(self, encoder_out, new_order):
        return encoder_out.index_select(0, new_order)

Myle Ott's avatar
Myle Ott committed
114
115
116
117

class TestIncrementalDecoder(FairseqIncrementalDecoder):
    def __init__(self, args, dictionary):
        super().__init__(dictionary)
118
        assert hasattr(args, 'beam_probs') or hasattr(args, 'probs')
Myle Ott's avatar
Myle Ott committed
119
120
121
        args.max_decoder_positions = getattr(args, 'max_decoder_positions', 100)
        self.args = args

122
123
    def forward(self, prev_output_tokens, encoder_out, incremental_state=None):
        if incremental_state is not None:
Myle Ott's avatar
Myle Ott committed
124
125
126
127
128
129
130
            prev_output_tokens = prev_output_tokens[:, -1:]
        bbsz = prev_output_tokens.size(0)
        vocab = len(self.dictionary)
        src_len = encoder_out.size(1)
        tgt_len = prev_output_tokens.size(1)

        # determine number of steps
131
        if incremental_state is not None:
Myle Ott's avatar
Myle Ott committed
132
            # cache step number
133
            step = utils.get_incremental_state(self, incremental_state, 'step')
Myle Ott's avatar
Myle Ott committed
134
135
            if step is None:
                step = 0
136
            utils.set_incremental_state(self, incremental_state, 'step', step + 1)
Myle Ott's avatar
Myle Ott committed
137
138
139
140
141
            steps = [step]
        else:
            steps = list(range(tgt_len))

        # define output in terms of raw probs
142
143
144
145
146
147
148
149
150
151
152
153
154
        if hasattr(self.args, 'probs'):
            assert self.args.probs.dim() == 3, \
                'expected probs to have size bsz*steps*vocab'
            probs = self.args.probs.index_select(1, torch.LongTensor(steps))
        else:
            probs = torch.FloatTensor(bbsz, len(steps), vocab).zero_()
            for i, step in enumerate(steps):
                # args.beam_probs gives the probability for every vocab element,
                # starting with eos, then unknown, and then the rest of the vocab
                if step < len(self.args.beam_probs):
                    probs[:, i, self.dictionary.eos():] = self.args.beam_probs[step]
                else:
                    probs[:, i, self.dictionary.eos()] = 1.0
Myle Ott's avatar
Myle Ott committed
155
156

        # random attention
157
        attn = torch.rand(bbsz, tgt_len, src_len)
Myle Ott's avatar
Myle Ott committed
158
159
160

        return Variable(probs), Variable(attn)

alexeib's avatar
alexeib committed
161
    def get_normalized_probs(self, net_output, log_probs, _):
Myle Ott's avatar
Myle Ott committed
162
        # the decoder returns probabilities directly
Myle Ott's avatar
Myle Ott committed
163
        probs = net_output[0]
Myle Ott's avatar
Myle Ott committed
164
        if log_probs:
Myle Ott's avatar
Myle Ott committed
165
            return probs.log()
Myle Ott's avatar
Myle Ott committed
166
        else:
Myle Ott's avatar
Myle Ott committed
167
            return probs
Myle Ott's avatar
Myle Ott committed
168
169
170

    def max_positions(self):
        return self.args.max_decoder_positions