"launcher/vscode:/vscode.git/clone" did not exist on "3ccb3bb0b54a6ea51d7b8c3dbf8551f4247899e8"
utils.py 4.06 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#

import torch
from torch.autograd import Variable

from fairseq import data, dictionary
from fairseq.models import (
    FairseqEncoder,
    FairseqIncrementalDecoder,
    FairseqModel,
)


def dummy_dictionary(vocab_size, prefix='token_'):
    d = dictionary.Dictionary()
    for i in range(vocab_size):
        token = prefix + str(i)
        d.add_symbol(token)
    d.finalize()
    return d


def dummy_dataloader(
    samples,
    padding_idx=1,
    eos_idx=2,
    batch_size=None,
):
    if batch_size is None:
        batch_size = len(samples)

    # add any missing data to samples
    for i, sample in enumerate(samples):
        if 'id' not in sample:
            sample['id'] = i

    # create dataloader
    dataset = TestDataset(samples)
    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
        collate_fn=(
            lambda samples: data.LanguagePairDataset.collate(
                samples,
                padding_idx,
                eos_idx,
            )
        ),
    )
    return iter(dataloader)


class TestDataset(torch.utils.data.Dataset):

    def __init__(self, data):
        super().__init__()
        self.data = data

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return len(self.data)


class TestModel(FairseqModel):
    def __init__(self, encoder, decoder):
        super().__init__(encoder, decoder)

    @classmethod
    def build_model(cls, args, src_dict, dst_dict):
        encoder = TestEncoder(args, src_dict)
        decoder = TestIncrementalDecoder(args, dst_dict)
        return cls(encoder, decoder)


class TestEncoder(FairseqEncoder):
    def __init__(self, args, dictionary):
        super().__init__(dictionary)
        self.args = args

    def forward(self, src_tokens, src_lengths):
        return src_tokens


class TestIncrementalDecoder(FairseqIncrementalDecoder):
    def __init__(self, args, dictionary):
        super().__init__(dictionary)
        assert hasattr(args, 'beam_probs')
        args.max_decoder_positions = getattr(args, 'max_decoder_positions', 100)
        self.args = args

    def forward(self, prev_output_tokens, encoder_out):
        if self._is_incremental_eval:
            prev_output_tokens = prev_output_tokens[:, -1:]
        return self._forward(prev_output_tokens, encoder_out)

    def _forward(self, prev_output_tokens, encoder_out):
        bbsz = prev_output_tokens.size(0)
        vocab = len(self.dictionary)
        src_len = encoder_out.size(1)
        tgt_len = prev_output_tokens.size(1)

        # determine number of steps
        if self._is_incremental_eval:
            # cache step number
            step = self.get_incremental_state('step')
            if step is None:
                step = 0
            self.set_incremental_state('step', step + 1)
            steps = [step]
        else:
            steps = list(range(tgt_len))

        # define output in terms of raw probs
        probs = torch.FloatTensor(bbsz, len(steps), vocab).zero_()
        for i, step in enumerate(steps):
            # args.beam_probs gives the probability for every vocab element,
            # starting with eos, then unknown, and then the rest of the vocab
            if step < len(self.args.beam_probs):
                probs[:, i, self.dictionary.eos():] = self.args.beam_probs[step]
            else:
                probs[:, i, self.dictionary.eos()] = 1.0

        # random attention
        attn = torch.rand(bbsz, src_len, tgt_len)

        return Variable(probs), Variable(attn)

    def get_normalized_probs(self, net_output, log_probs):
        # the decoder returns probabilities directly
        if log_probs:
            return net_output.log()
        else:
            return net_output

    def max_positions(self):
        return self.args.max_decoder_positions