utils.py 5.05 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

import torch

alexeib's avatar
alexeib committed
10
from fairseq import utils
Myle Ott's avatar
Myle Ott committed
11
12
from fairseq.data import Dictionary
from fairseq.data.language_pair_dataset import collate
Myle Ott's avatar
Myle Ott committed
13
14
15
16
17
from fairseq.models import (
    FairseqEncoder,
    FairseqIncrementalDecoder,
    FairseqModel,
)
Myle Ott's avatar
Myle Ott committed
18
from fairseq.tasks import FairseqTask
Myle Ott's avatar
Myle Ott committed
19
20
21


def dummy_dictionary(vocab_size, prefix='token_'):
Myle Ott's avatar
Myle Ott committed
22
    d = Dictionary()
Myle Ott's avatar
Myle Ott committed
23
24
25
    for i in range(vocab_size):
        token = prefix + str(i)
        d.add_symbol(token)
Myle Ott's avatar
Myle Ott committed
26
    d.finalize(padding_factor=1)  # don't add extra padding symbols
Myle Ott's avatar
Myle Ott committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    return d


def dummy_dataloader(
    samples,
    padding_idx=1,
    eos_idx=2,
    batch_size=None,
):
    if batch_size is None:
        batch_size = len(samples)

    # add any missing data to samples
    for i, sample in enumerate(samples):
        if 'id' not in sample:
            sample['id'] = i

    # create dataloader
    dataset = TestDataset(samples)
    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
Myle Ott's avatar
Myle Ott committed
49
        collate_fn=(lambda samples: collate(samples, padding_idx, eos_idx)),
Myle Ott's avatar
Myle Ott committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    )
    return iter(dataloader)


class TestDataset(torch.utils.data.Dataset):

    def __init__(self, data):
        super().__init__()
        self.data = data

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return len(self.data)


Myle Ott's avatar
Myle Ott committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
class TestTranslationTask(FairseqTask):

    def __init__(self, args, src_dict, tgt_dict, model):
        super().__init__(args)
        self.src_dict = src_dict
        self.tgt_dict = tgt_dict
        self.model = model

    @classmethod
    def setup_task(cls, args, src_dict=None, tgt_dict=None, model=None):
        return cls(args, src_dict, tgt_dict, model)

    def build_model(self, args):
        return TestModel.build_model(args, self)

    @property
    def source_dictionary(self):
        return self.src_dict

    @property
    def target_dictionary(self):
        return self.tgt_dict


Myle Ott's avatar
Myle Ott committed
91
92
93
94
95
class TestModel(FairseqModel):
    def __init__(self, encoder, decoder):
        super().__init__(encoder, decoder)

    @classmethod
Myle Ott's avatar
Myle Ott committed
96
97
98
    def build_model(cls, args, task):
        encoder = TestEncoder(args, task.source_dictionary)
        decoder = TestIncrementalDecoder(args, task.target_dictionary)
Myle Ott's avatar
Myle Ott committed
99
100
101
102
103
104
105
106
107
108
109
        return cls(encoder, decoder)


class TestEncoder(FairseqEncoder):
    def __init__(self, args, dictionary):
        super().__init__(dictionary)
        self.args = args

    def forward(self, src_tokens, src_lengths):
        return src_tokens

110
111
112
    def reorder_encoder_out(self, encoder_out, new_order):
        return encoder_out.index_select(0, new_order)

Myle Ott's avatar
Myle Ott committed
113
114
115
116

class TestIncrementalDecoder(FairseqIncrementalDecoder):
    def __init__(self, args, dictionary):
        super().__init__(dictionary)
117
        assert hasattr(args, 'beam_probs') or hasattr(args, 'probs')
Myle Ott's avatar
Myle Ott committed
118
119
120
        args.max_decoder_positions = getattr(args, 'max_decoder_positions', 100)
        self.args = args

121
122
    def forward(self, prev_output_tokens, encoder_out, incremental_state=None):
        if incremental_state is not None:
Myle Ott's avatar
Myle Ott committed
123
124
125
126
127
128
129
            prev_output_tokens = prev_output_tokens[:, -1:]
        bbsz = prev_output_tokens.size(0)
        vocab = len(self.dictionary)
        src_len = encoder_out.size(1)
        tgt_len = prev_output_tokens.size(1)

        # determine number of steps
130
        if incremental_state is not None:
Myle Ott's avatar
Myle Ott committed
131
            # cache step number
132
            step = utils.get_incremental_state(self, incremental_state, 'step')
Myle Ott's avatar
Myle Ott committed
133
134
            if step is None:
                step = 0
135
            utils.set_incremental_state(self, incremental_state, 'step', step + 1)
Myle Ott's avatar
Myle Ott committed
136
137
138
139
140
            steps = [step]
        else:
            steps = list(range(tgt_len))

        # define output in terms of raw probs
141
142
143
144
145
146
147
148
149
150
151
152
153
        if hasattr(self.args, 'probs'):
            assert self.args.probs.dim() == 3, \
                'expected probs to have size bsz*steps*vocab'
            probs = self.args.probs.index_select(1, torch.LongTensor(steps))
        else:
            probs = torch.FloatTensor(bbsz, len(steps), vocab).zero_()
            for i, step in enumerate(steps):
                # args.beam_probs gives the probability for every vocab element,
                # starting with eos, then unknown, and then the rest of the vocab
                if step < len(self.args.beam_probs):
                    probs[:, i, self.dictionary.eos():] = self.args.beam_probs[step]
                else:
                    probs[:, i, self.dictionary.eos()] = 1.0
Myle Ott's avatar
Myle Ott committed
154
155

        # random attention
156
        attn = torch.rand(bbsz, tgt_len, src_len)
Myle Ott's avatar
Myle Ott committed
157

Myle Ott's avatar
Myle Ott committed
158
        return probs, attn
Myle Ott's avatar
Myle Ott committed
159

alexeib's avatar
alexeib committed
160
    def get_normalized_probs(self, net_output, log_probs, _):
Myle Ott's avatar
Myle Ott committed
161
        # the decoder returns probabilities directly
Myle Ott's avatar
Myle Ott committed
162
        probs = net_output[0]
Myle Ott's avatar
Myle Ott committed
163
        if log_probs:
Myle Ott's avatar
Myle Ott committed
164
            return probs.log()
Myle Ott's avatar
Myle Ott committed
165
        else:
Myle Ott's avatar
Myle Ott committed
166
            return probs
Myle Ott's avatar
Myle Ott committed
167
168
169

    def max_positions(self):
        return self.args.max_decoder_positions