train.py 13 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

9
import collections
Myle Ott's avatar
Myle Ott committed
10
import itertools
11
12
13
import os
import math
import torch
Sergey Edunov's avatar
Sergey Edunov committed
14

Myle Ott's avatar
Myle Ott committed
15
from fairseq import data, distributed_utils, options, progress_bar, tasks, utils
16
17
18
from fairseq.fp16_trainer import FP16Trainer
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
Sergey Edunov's avatar
Sergey Edunov committed
19

Myle Ott's avatar
Myle Ott committed
20

Myle Ott's avatar
Myle Ott committed
21
def main(args):
22
23
    if args.max_tokens is None:
        args.max_tokens = 6000
24
25
26
27
28
29
30
    print(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

Myle Ott's avatar
Myle Ott committed
31
32
    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)
33

Myle Ott's avatar
Myle Ott committed
34
    # Load dataset splits
Alexei Baevski's avatar
Alexei Baevski committed
35
    load_dataset_splits(task, ['train', 'valid'])
36

Myle Ott's avatar
Myle Ott committed
37
38
39
    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
40
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
Myle Ott's avatar
Myle Ott committed
41
    print('| num. model params: {}'.format(sum(p.numel() for p in model.parameters())))
42
43
44

    # Build trainer
    if args.fp16:
Myle Ott's avatar
Myle Ott committed
45
        trainer = FP16Trainer(args, task, model, criterion)
46
47
48
    else:
        if torch.cuda.get_device_capability(0)[0] >= 7:
            print('| NOTICE: your device may support faster training with --fp16')
Myle Ott's avatar
Myle Ott committed
49
        trainer = Trainer(args, task, model, criterion)
50
51
52
53
54
55
56
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Initialize dataloader
Myle Ott's avatar
Myle Ott committed
57
58
59
    max_positions = trainer.get_model().max_positions()
    epoch_itr = data.EpochBatchIterator(
        dataset=task.dataset(args.train_subset),
60
        max_tokens=args.max_tokens,
Myle Ott's avatar
Myle Ott committed
61
62
63
64
        max_sentences=args.max_sentences_valid,
        max_positions=max_positions,
        ignore_invalid_inputs=True,
        required_batch_size_multiple=8,
65
66
        seed=args.seed,
        num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
67
        shard_id=args.distributed_rank,
68
69
70
    )

    # Load the latest checkpoint if one is available
Myle Ott's avatar
Myle Ott committed
71
    load_checkpoint(args, trainer, epoch_itr)
72
73

    # Send a dummy batch to warm the caching allocator
Myle Ott's avatar
Myle Ott committed
74
    dummy_batch = task.dataset('train').get_dummy_batch(args.max_tokens, max_positions)
75
76
77
78
79
80
81
82
    trainer.dummy_train_step(dummy_batch)

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
Myle Ott's avatar
Myle Ott committed
83
    valid_losses = [None]
84
    valid_subsets = args.valid_subset.split(',')
Myle Ott's avatar
Myle Ott committed
85
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates() < max_update:
86
        # train for one epoch
Myle Ott's avatar
Myle Ott committed
87
        train(args, trainer, task, epoch_itr)
88

Myle Ott's avatar
Myle Ott committed
89
90
        if epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
91
92

        # only use first validation loss to update the learning rate
Myle Ott's avatar
Myle Ott committed
93
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
94
95

        # save checkpoint
Myle Ott's avatar
Myle Ott committed
96
97
        if epoch_itr.epoch % args.save_interval == 0:
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
98
99
100
101
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))


Myle Ott's avatar
Myle Ott committed
102
def train(args, trainer, task, epoch_itr):
103
104
    """Train the model for one epoch."""

Myle Ott's avatar
Myle Ott committed
105
106
107
    # Initialize data iterator
    itr = epoch_itr.next_epoch_itr()
    progress = progress_bar.build_progress_bar(args, itr, epoch_itr.epoch, no_progress_bar='simple')
108
109

    # update parameters every N batches
Myle Ott's avatar
Myle Ott committed
110
111
    if epoch_itr.epoch <= len(args.update_freq):
        update_freq = args.update_freq[epoch_itr.epoch - 1]
112
113
114
115
    else:
        update_freq = args.update_freq[-1]

    extra_meters = collections.defaultdict(lambda: AverageMeter())
116
    first_valid = args.valid_subset.split(',')[0]
117
    max_update = args.max_update or math.inf
Myle Ott's avatar
Myle Ott committed
118
119
    num_batches = len(epoch_itr)
    for i, sample in enumerate(progress, start=epoch_itr.iterations_in_epoch):
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        if i < num_batches - 1 and (i + 1) % update_freq > 0:
            # buffer updates according to --update-freq
            trainer.train_step(sample, update_params=False)
            continue
        else:
            log_output = trainer.train_step(sample, update_params=True)

        # log mid-epoch stats
        stats = get_training_stats(trainer)
        for k, v in log_output.items():
            if k in ['loss', 'nll_loss', 'sample_size']:
                continue  # these are already logged above
            if 'loss' in k:
                extra_meters[k].update(v, log_output['sample_size'])
            else:
                extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
        progress.log(stats)

        # ignore the first mini-batch in words-per-second calculation
        if i == 0:
            trainer.get_meter('wps').reset()

143
        num_updates = trainer.get_num_updates()
144
        if args.save_interval_updates > 0 and num_updates % args.save_interval_updates == 0 and num_updates > 0:
Myle Ott's avatar
Myle Ott committed
145
146
            valid_losses = validate(args, trainer, task, epoch_itr, [first_valid])
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
147
148

        if num_updates >= max_update:
149
150
151
152
153
154
155
156
            break

    # log end-of-epoch stats
    stats = get_training_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
    progress.print(stats)

Myle Ott's avatar
Myle Ott committed
157
158
159
160
161
162
    # reset training meters
    for k in ['train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'clip']:
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

def get_training_stats(trainer):
    stats = collections.OrderedDict()
    stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg)
    if trainer.get_meter('train_nll_loss').count > 0:
        nll_loss = trainer.get_meter('train_nll_loss').avg
        stats['nll_loss'] = '{:.3f}'.format(nll_loss)
    else:
        nll_loss = trainer.get_meter('train_loss').avg
    stats['ppl'] = get_perplexity(nll_loss)
    stats['wps'] = round(trainer.get_meter('wps').avg)
    stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg)
    stats['wpb'] = round(trainer.get_meter('wpb').avg)
    stats['bsz'] = round(trainer.get_meter('bsz').avg)
    stats['num_updates'] = trainer.get_num_updates()
    stats['lr'] = trainer.get_lr()
    stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg)
    stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg)
    stats['oom'] = trainer.get_meter('oom').avg
    if trainer.get_meter('loss_scale') is not None:
        stats['loss_scale'] = '{:.3f}'.format(trainer.get_meter('loss_scale').avg)
    stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
    return stats


Myle Ott's avatar
Myle Ott committed
188
def validate(args, trainer, task, epoch_itr, subsets):
189
190
191
    """Evaluate the model on the validation set(s) and return the losses."""
    valid_losses = []
    for subset in subsets:
Myle Ott's avatar
Myle Ott committed
192
193
194
        # Initialize data iterator
        itr = data.EpochBatchIterator(
            dataset=task.dataset(subset),
195
196
            max_tokens=args.max_tokens,
            max_sentences=args.max_sentences_valid,
Myle Ott's avatar
Myle Ott committed
197
198
199
200
            max_positions=trainer.get_model().max_positions(),
            ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
            required_batch_size_multiple=8,
            seed=args.seed,
201
            num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
202
203
            shard_id=args.distributed_rank,
        ).next_epoch_itr(shuffle=False)
204
        progress = progress_bar.build_progress_bar(
Myle Ott's avatar
Myle Ott committed
205
            args, itr, epoch_itr.epoch,
206
207
208
209
210
211
212
213
214
215
            prefix='valid on \'{}\' subset'.format(subset),
            no_progress_bar='simple'
        )

        # reset validation loss meters
        for k in ['valid_loss', 'valid_nll_loss']:
            meter = trainer.get_meter(k)
            if meter is not None:
                meter.reset()
        extra_meters = collections.defaultdict(lambda: AverageMeter())
Myle Ott's avatar
Myle Ott committed
216

217
218
219
220
221
222
223
        for sample in progress:
            log_output = trainer.valid_step(sample)

            for k, v in log_output.items():
                if k in ['loss', 'nll_loss', 'sample_size']:
                    continue
                extra_meters[k].update(v)
224

225
226
227
228
229
        # log validation stats
        stats = get_valid_stats(trainer)
        for k, meter in extra_meters.items():
            stats[k] = meter.avg
        progress.print(stats)
230

231
232
        valid_losses.append(stats['valid_loss'])
    return valid_losses
233
234
235
236
237
238
239
240


def get_valid_stats(trainer):
    stats = collections.OrderedDict()
    stats['valid_loss'] = trainer.get_meter('valid_loss').avg
    if trainer.get_meter('valid_nll_loss').count > 0:
        nll_loss = trainer.get_meter('valid_nll_loss').avg
        stats['valid_nll_loss'] = nll_loss
241
    else:
242
243
        nll_loss = trainer.get_meter('valid_loss').avg
    stats['valid_ppl'] = get_perplexity(nll_loss)
Myle Ott's avatar
Nits  
Myle Ott committed
244
245
246
    stats['num_updates'] = trainer.get_num_updates()
    if hasattr(save_checkpoint, 'best'):
        stats['best'] = min(save_checkpoint.best, stats['valid_loss'])
247
248
249
250
251
252
253
254
255
256
    return stats


def get_perplexity(loss):
    try:
        return '{:.2f}'.format(math.pow(2, loss))
    except OverflowError:
        return float('inf')


Myle Ott's avatar
Myle Ott committed
257
258
def save_checkpoint(args, trainer, epoch_itr, val_loss):
    if args.no_save or not distributed_utils.is_master(args):
259
        return
Myle Ott's avatar
Myle Ott committed
260
261
    epoch = epoch_itr.epoch
    end_of_epoch = epoch_itr.end_of_epoch()
262
263
264
265
    updates = trainer.get_num_updates()

    checkpoint_conds = collections.OrderedDict()
    checkpoint_conds['checkpoint{}.pt'.format(epoch)] = (
Alexei Baevski's avatar
Alexei Baevski committed
266
267
            end_of_epoch and not args.no_epoch_checkpoints and
            epoch % args.save_interval == 0
268
269
    )
    checkpoint_conds['checkpoint_{}_{}.pt'.format(epoch, updates)] = (
Alexei Baevski's avatar
Alexei Baevski committed
270
271
            not end_of_epoch and args.save_interval_updates > 0 and
            updates % args.save_interval_updates == 0
272
273
    )
    checkpoint_conds['checkpoint_best.pt'] = (
Alexei Baevski's avatar
Alexei Baevski committed
274
275
            val_loss is not None and
            (not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best)
276
277
278
    )
    checkpoint_conds['checkpoint_last.pt'] = True  # keep this last so that it's a symlink

Myle Ott's avatar
Myle Ott committed
279
280
281
    prev_best = getattr(save_checkpoint, 'best', val_loss)
    if val_loss is not None:
        save_checkpoint.best = min(val_loss, prev_best)
282
    extra_state = {
Myle Ott's avatar
Myle Ott committed
283
284
        'best': save_checkpoint.best,
        'train_iterator': epoch_itr.state_dict(),
285
286
287
        'val_loss': val_loss,
    }

288
289
    checkpoints = [os.path.join(args.save_dir, fn) for fn, cond in checkpoint_conds.items() if cond]
    if len(checkpoints) > 0:
290
291
        for cp in checkpoints:
            trainer.save_checkpoint(cp, extra_state)
292
293
294
295

    if not end_of_epoch and args.keep_interval_updates > 0:
        # remove old checkpoints; checkpoints are sorted in descending order
        checkpoints = utils.checkpoint_paths(args.save_dir, pattern=r'checkpoint_\d+_(\d+)\.pt')
296
297
        for old_chk in checkpoints[args.keep_interval_updates:]:
            os.remove(old_chk)
298
299


Myle Ott's avatar
Myle Ott committed
300
301
def load_checkpoint(args, trainer, epoch_itr):
    """Load a checkpoint and replay dataloader to match."""
302
303
304
    os.makedirs(args.save_dir, exist_ok=True)
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    if os.path.isfile(checkpoint_path):
305
306
        extra_state = trainer.load_checkpoint(checkpoint_path, args.reset_optimizer, args.reset_lr_scheduler,
                                              eval(args.optimizer_overrides))
307
        if extra_state is not None:
Myle Ott's avatar
Myle Ott committed
308
309
310
311
312
            # replay train iterator to match checkpoint
            epoch_itr.load_state_dict(extra_state['train_iterator'])

            print('| loaded checkpoint {} (epoch {} @ {} updates)'.format(
                checkpoint_path, epoch_itr.epoch, trainer.get_num_updates()))
alexeib's avatar
alexeib committed
313

Myle Ott's avatar
Myle Ott committed
314
315
            trainer.lr_step(epoch_itr.epoch)
            trainer.lr_step_update(trainer.get_num_updates())
316
317
318
            if 'best' in extra_state:
                save_checkpoint.best = extra_state['best']

319

Alexei Baevski's avatar
Alexei Baevski committed
320
def load_dataset_splits(task, splits):
Myle Ott's avatar
Myle Ott committed
321
    for split in splits:
Alexei Baevski's avatar
Alexei Baevski committed
322
323
324
325
326
327
328
329
330
331
332
        if split == 'train':
            task.load_dataset(split, combine=True)
        else:
            for k in itertools.count():
                split_k = split + (str(k) if k > 0 else '')
                try:
                    task.load_dataset(split_k, combine=False)
                except FileNotFoundError as e:
                    if k > 0:
                        break
                    raise e
Sergey Edunov's avatar
Sergey Edunov committed
333

Myle Ott's avatar
Myle Ott committed
334

Sergey Edunov's avatar
Sergey Edunov committed
335
if __name__ == '__main__':
Myle Ott's avatar
Myle Ott committed
336
337
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser)
338
339
340

    if args.distributed_port > 0 or args.distributed_init_method is not None:
        from distributed_train import main as distributed_main
341

342
343
344
        distributed_main(args)
    elif args.distributed_world_size > 1:
        from multiprocessing_train import main as multiprocessing_main
345

346
347
348
        multiprocessing_main(args)
    else:
        main(args)