test_binaries.py 30.5 KB
Newer Older
1
# Copyright (c) Facebook, Inc. and its affiliates.
Myle Ott's avatar
Myle Ott committed
2
#
3
4
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
Myle Ott's avatar
Myle Ott committed
5

6
import contextlib
Myle Ott's avatar
Myle Ott committed
7
8
9
10
11
12
13
14
15
16
17
from io import StringIO
import os
import random
import sys
import tempfile
import unittest

import torch

from fairseq import options

Myle Ott's avatar
Myle Ott committed
18
19
20
21
import preprocess
import train
import generate
import interactive
22
import eval_lm
Myle Ott's avatar
Myle Ott committed
23
import validate
24
25
26
27
28
29
30
31
32
33
34
35


class TestTranslation(unittest.TestCase):

    def test_fconv(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en')
                generate_main(data_dir)

36
37
38
39
    def test_raw(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv_raw') as data_dir:
                create_dummy_data(data_dir)
40
41
42
                preprocess_translation_data(data_dir, ['--dataset-impl', 'raw'])
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--dataset-impl', 'raw'])
                generate_main(data_dir, ['--dataset-impl', 'raw'])
43

44
45
46
47
48
49
50
51
    def test_fp16(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fp16') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--fp16'])
                generate_main(data_dir)

Myle Ott's avatar
Myle Ott committed
52
53
54
55
56
57
58
59
    def test_memory_efficient_fp16(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_memory_efficient_fp16') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--memory-efficient-fp16'])
                generate_main(data_dir)

60
61
62
63
64
65
66
67
    def test_update_freq(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_update_freq') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--update-freq', '3'])
                generate_main(data_dir)

Myle Ott's avatar
Myle Ott committed
68
69
70
71
72
73
74
75
76
77
    def test_max_positions(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_max_positions') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                with self.assertRaises(Exception) as context:
                    train_translation_model(
                        data_dir, 'fconv_iwslt_de_en', ['--max-target-positions', '5'],
                    )
                self.assertTrue(
Myle Ott's avatar
Myle Ott committed
78
                    'skip this example with --skip-invalid-size-inputs-valid-test' in str(context.exception)
Myle Ott's avatar
Myle Ott committed
79
80
81
82
83
84
85
86
87
                )
                train_translation_model(
                    data_dir, 'fconv_iwslt_de_en',
                    ['--max-target-positions', '5', '--skip-invalid-size-inputs-valid-test'],
                )
                with self.assertRaises(Exception) as context:
                    generate_main(data_dir)
                generate_main(data_dir, ['--skip-invalid-size-inputs-valid-test'])

88
89
90
91
92
93
94
95
    def test_generation(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_sampling') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en')
                generate_main(data_dir, [
                    '--sampling',
96
                    '--temperature', '2',
97
98
99
100
101
102
103
                    '--beam', '2',
                    '--nbest', '2',
                ])
                generate_main(data_dir, [
                    '--sampling',
                    '--sampling-topk', '3',
                    '--beam', '2',
Xing Zhou's avatar
Xing Zhou committed
104
105
106
107
108
109
                    '--nbest', '2',
                ])
                generate_main(data_dir, [
                    '--sampling',
                    '--sampling-topp', '0.2',
                    '--beam', '2',
110
111
112
113
                    '--nbest', '2',
                ])
                generate_main(data_dir, ['--prefix-size', '2'])

114
115
116
117
118
    def test_lstm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_lstm') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
Myle Ott's avatar
Myle Ott committed
119
120
121
                train_translation_model(data_dir, 'lstm_wiseman_iwslt_de_en', [
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
122
123
124
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-out-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
125
126
127
128
129
130
131
132
133
134
135
                ])
                generate_main(data_dir)

    def test_lstm_bidirectional(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_lstm_bidirectional') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'lstm', [
                    '--encoder-layers', '2',
                    '--encoder-bidirectional',
136
137
138
139
                    '--encoder-hidden-size', '16',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-out-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
140
141
                    '--decoder-layers', '2',
                ])
142
143
144
145
146
147
148
                generate_main(data_dir)

    def test_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_transformer') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
149
150
151
152
153
                train_translation_model(data_dir, 'transformer_iwslt_de_en', [
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
154
                ], run_validation=True)
155
156
                generate_main(data_dir)

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def test_transformer_cross_self_attention(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_transformer_cross_self_attention') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'transformer_iwslt_de_en', [
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--no-cross-attention',
                    '--cross-self-attention',
                    '--layer-wise-attention',
                ], run_validation=True)
                generate_main(data_dir, extra_flags=[])

174
175
176
177
178
179
180
181
    def test_lightconv(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_lightconv') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'lightconv_iwslt_de_en', [
                    '--encoder-conv-type', 'lightweight',
                    '--decoder-conv-type', 'lightweight',
182
183
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
184
185
186
187
188
189
190
191
192
193
194
                ])
                generate_main(data_dir)

    def test_dynamicconv(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_dynamicconv') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'lightconv_iwslt_de_en', [
                    '--encoder-conv-type', 'dynamic',
                    '--decoder-conv-type', 'dynamic',
195
196
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
197
198
199
                ])
                generate_main(data_dir)

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    def test_cmlm_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_cmlm_transformer') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir, ['--joined-dictionary'])
                train_translation_model(data_dir, 'cmlm_transformer', [
                    '--apply-bert-init',
                    '--criterion', 'nat_loss',
                    '--noise', 'full_mask',
                    '--pred-length-offset',
                    '--length-loss-factor', '0.1'
                ], task='translation_lev')
                generate_main(data_dir, [
                    '--task', 'translation_lev',
                    '--iter-decode-max-iter', '9',
                    '--iter-decode-eos-penalty', '0',
                    '--print-step',
                ])

219
220
221
222
    def test_levenshtein_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_levenshtein_transformer') as data_dir:
                create_dummy_data(data_dir)
223
                preprocess_translation_data(data_dir, ['--joined-dictionary'])
224
225
226
227
                train_translation_model(data_dir, 'levenshtein_transformer', [
                    '--apply-bert-init', '--early-exit', '6,6,6',
                    '--criterion', 'nat_loss'
                ], task='translation_lev')
228
229
230
231
232
233
                generate_main(data_dir, [
                    '--task', 'translation_lev',
                    '--iter-decode-max-iter', '9',
                    '--iter-decode-eos-penalty', '0',
                    '--print-step',
                ])
234
235
236
237
238

    def test_nonautoregressive_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_nonautoregressive_transformer') as data_dir:
                create_dummy_data(data_dir)
239
                preprocess_translation_data(data_dir, ['--joined-dictionary'])
240
241
242
243
244
                train_translation_model(data_dir, 'nonautoregressive_transformer', [
                    '--apply-bert-init', '--src-embedding-copy', '--criterion',
                    'nat_loss', '--noise', 'full_mask', '--pred-length-offset',
                    '--length-loss-factor', '0.1'
                ], task='translation_lev')
245
246
247
248
249
250
                generate_main(data_dir, [
                    '--task', 'translation_lev',
                    '--iter-decode-max-iter', '9',
                    '--iter-decode-eos-penalty', '0',
                    '--print-step',
                ])
251
252
253
254
255

    def test_iterative_nonautoregressive_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_iterative_nonautoregressive_transformer') as data_dir:
                create_dummy_data(data_dir)
256
                preprocess_translation_data(data_dir, ['--joined-dictionary'])
257
258
259
260
261
                train_translation_model(data_dir, 'iterative_nonautoregressive_transformer', [
                    '--apply-bert-init', '--src-embedding-copy', '--criterion',
                    'nat_loss', '--noise', 'full_mask', '--stochastic-approx',
                    '--dae-ratio', '0.5', '--train-step', '3'
                ], task='translation_lev')
262
263
264
265
266
267
                generate_main(data_dir, [
                    '--task', 'translation_lev',
                    '--iter-decode-max-iter', '9',
                    '--iter-decode-eos-penalty', '0',
                    '--print-step',
                ])
268
269
270
271
272

    def test_insertion_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_insertion_transformer') as data_dir:
                create_dummy_data(data_dir)
273
                preprocess_translation_data(data_dir, ['--joined-dictionary'])
274
275
276
277
                train_translation_model(data_dir, 'insertion_transformer', [
                    '--apply-bert-init', '--criterion', 'nat_loss', '--noise',
                    'random_mask'
                ], task='translation_lev')
278
279
280
281
282
283
                generate_main(data_dir, [
                    '--task', 'translation_lev',
                    '--iter-decode-max-iter', '9',
                    '--iter-decode-eos-penalty', '0',
                    '--print-step',
                ])
284

Myle Ott's avatar
Myle Ott committed
285
286
287
288
289
290
291
292
293
294
    def test_mixture_of_experts(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_moe') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'transformer_iwslt_de_en', [
                    '--task', 'translation_moe',
                    '--method', 'hMoElp',
                    '--mean-pool-gating-network',
                    '--num-experts', '3',
295
296
297
298
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
299
300
301
302
303
304
305
306
307
                ])
                generate_main(data_dir, [
                    '--task', 'translation_moe',
                    '--method', 'hMoElp',
                    '--mean-pool-gating-network',
                    '--num-experts', '3',
                    '--gen-expert', '0'
                ])

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
    def test_alignment(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_alignment') as data_dir:
                create_dummy_data(data_dir, alignment=True)
                preprocess_translation_data(data_dir, ['--align-suffix', 'align'])
                train_translation_model(
                    data_dir,
                    'transformer_align',
                    [
                        '--encoder-layers', '2',
                        '--decoder-layers', '2',
                        '--encoder-embed-dim', '8',
                        '--decoder-embed-dim', '8',
                        '--load-alignments',
                        '--alignment-layer', '1',
                        '--criterion', 'label_smoothed_cross_entropy_with_alignment'
                    ],
                    run_validation=True,
                )
                generate_main(data_dir)

329
330
331
332
333
334
335
336
337

class TestStories(unittest.TestCase):

    def test_fconv_self_att_wp(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv_self_att_wp') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                config = [
338
339
                    '--encoder-layers', '[(128, 3)] * 2',
                    '--decoder-layers', '[(128, 3)] * 2',
340
341
342
343
344
                    '--decoder-attention', 'True',
                    '--encoder-attention', 'False',
                    '--gated-attention', 'True',
                    '--self-attention', 'True',
                    '--project-input', 'True',
345
346
347
348
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-out-embed-dim', '8',
                    '--multihead-self-attention-nheads', '2'
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
                ]
                train_translation_model(data_dir, 'fconv_self_att_wp', config)
                generate_main(data_dir)

                # fusion model
                os.rename(os.path.join(data_dir, 'checkpoint_last.pt'), os.path.join(data_dir, 'pretrained.pt'))
                config.extend([
                    '--pretrained', 'True',
                    '--pretrained-checkpoint', os.path.join(data_dir, 'pretrained.pt'),
                    '--save-dir', os.path.join(data_dir, 'fusion_model'),
                ])
                train_translation_model(data_dir, 'fconv_self_att_wp', config)


class TestLanguageModeling(unittest.TestCase):

    def test_fconv_lm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv_lm') as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
Myle Ott's avatar
Myle Ott committed
370
371
372
373
374
375
376
377
378
379
380
381
382
                train_language_model(data_dir, 'fconv_lm', [
                    '--decoder-layers', '[(850, 3)] * 2 + [(1024,4)]',
                    '--decoder-embed-dim', '280',
                    '--optimizer', 'nag',
                    '--lr', '0.1',
                ])
                eval_lm_main(data_dir)

    def test_transformer_lm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_transformer_lm') as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
Myle Ott's avatar
Myle Ott committed
383
384
385
                train_language_model(
                    data_dir, 'transformer_lm', ['--add-bos-token'], run_validation=True,
                )
386
                eval_lm_main(data_dir)
Myle Ott's avatar
Myle Ott committed
387
388
389
390
391
                generate_main(data_dir, [
                    '--task', 'language_modeling',
                    '--sample-break-mode', 'eos',
                    '--tokens-per-sample', '500',
                ])
392

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    def test_lightconv_lm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_lightconv_lm') as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
                train_language_model(
                    data_dir, 'lightconv_lm', ['--add-bos-token'], run_validation=True,
                )
                eval_lm_main(data_dir)
                generate_main(data_dir, [
                    '--task', 'language_modeling',
                    '--sample-break-mode', 'eos',
                    '--tokens-per-sample', '500',
                ])

408

409
class TestMaskedLanguageModel(unittest.TestCase):
410
411

    def test_legacy_masked_lm(self):
412
        with contextlib.redirect_stdout(StringIO()):
413
            with tempfile.TemporaryDirectory("test_legacy_mlm") as data_dir:
414
415
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
416
                train_legacy_masked_language_model(data_dir, "masked_lm")
417

Matt Le's avatar
Matt Le committed
418
    def _test_pretrained_masked_lm_for_translation(self, learned_pos_emb, encoder_only):
419
420
421
422
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory("test_mlm") as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
423
                train_legacy_masked_language_model(
Matt Le's avatar
Matt Le committed
424
                    data_dir,
425
                    arch="masked_lm",
Matt Le's avatar
Matt Le committed
426
427
                    extra_args=('--encoder-learned-pos',) if learned_pos_emb else ()
                )
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
                with tempfile.TemporaryDirectory(
                    "test_mlm_translation"
                ) as translation_dir:
                    create_dummy_data(translation_dir)
                    preprocess_translation_data(
                        translation_dir, extra_flags=["--joined-dictionary"]
                    )
                    # Train transformer with data_dir/checkpoint_last.pt
                    train_translation_model(
                        translation_dir,
                        arch="transformer_from_pretrained_xlm",
                        extra_flags=[
                            "--decoder-layers",
                            "1",
                            "--decoder-embed-dim",
                            "32",
                            "--decoder-attention-heads",
                            "1",
                            "--decoder-ffn-embed-dim",
                            "32",
                            "--encoder-layers",
                            "1",
                            "--encoder-embed-dim",
                            "32",
                            "--encoder-attention-heads",
                            "1",
                            "--encoder-ffn-embed-dim",
                            "32",
                            "--pretrained-xlm-checkpoint",
Bairen Yi's avatar
Bairen Yi committed
457
                            "{}/checkpoint_last.pt".format(data_dir),
458
459
460
461
462
463
                            "--activation-fn",
                            "gelu",
                            "--max-source-positions",
                            "500",
                            "--max-target-positions",
                            "500",
Matt Le's avatar
Matt Le committed
464
465
466
467
                        ] + (
                            ["--encoder-learned-pos", "--decoder-learned-pos"]
                            if learned_pos_emb else []
                        ) + (['--init-encoder-only'] if encoder_only else []),
468
469
470
                        task="translation_from_pretrained_xlm",
                    )

Matt Le's avatar
Matt Le committed
471
472
473
474
475
476
    def test_pretrained_masked_lm_for_translation_learned_pos_emb(self):
        self._test_pretrained_masked_lm_for_translation(True, False)

    def test_pretrained_masked_lm_for_translation_sinusoidal_pos_emb(self):
        self._test_pretrained_masked_lm_for_translation(False, False)

477
    def test_pretrained_masked_lm_for_translation_encoder_only(self):
Matt Le's avatar
Matt Le committed
478
        self._test_pretrained_masked_lm_for_translation(True, True)
479

480
481

def train_legacy_masked_language_model(data_dir, arch, extra_args=()):
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
    train_parser = options.get_training_parser()
    # TODO: langs should be in and out right?
    train_args = options.parse_args_and_arch(
        train_parser,
        [
            "--task",
            "cross_lingual_lm",
            data_dir,
            "--arch",
            arch,
            # Optimizer args
            "--optimizer",
            "adam",
            "--lr-scheduler",
            "reduce_lr_on_plateau",
            "--lr-shrink",
            "0.5",
            "--lr",
            "0.0001",
            "--min-lr",
            "1e-09",
            # dropout, attention args
            "--dropout",
            "0.1",
            "--attention-dropout",
            "0.1",
            # MLM args
            "--criterion",
510
            "legacy_masked_lm_loss",
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
            "--masked-lm-only",
            "--monolingual-langs",
            "in,out",
            "--num-segment",
            "5",
            # Transformer args: use a small transformer model for fast training
            "--encoder-layers",
            "1",
            "--encoder-embed-dim",
            "32",
            "--encoder-attention-heads",
            "1",
            "--encoder-ffn-embed-dim",
            "32",
            # Other training args
            "--max-tokens",
            "500",
            "--tokens-per-sample",
            "500",
            "--save-dir",
            data_dir,
            "--max-epoch",
            "1",
            "--no-progress-bar",
            "--distributed-world-size",
            "1",
537
538
            "--dataset-impl",
            "raw",
Matt Le's avatar
Matt Le committed
539
        ] + list(extra_args),
540
541
542
543
    )
    train.main(train_args)


Dmytro Okhonko's avatar
Dmytro Okhonko committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
class TestCommonOptions(unittest.TestCase):

    def test_optimizers(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_optimizers') as data_dir:
                # Use just a bit of data and tiny model to keep this test runtime reasonable
                create_dummy_data(data_dir, num_examples=10, maxlen=5)
                preprocess_translation_data(data_dir)
                optimizers = ['adafactor', 'adam', 'nag', 'adagrad', 'sgd', 'adadelta']
                last_checkpoint = os.path.join(data_dir, 'checkpoint_last.pt')
                for optimizer in optimizers:
                    if os.path.exists(last_checkpoint):
                        os.remove(last_checkpoint)
                    train_translation_model(data_dir, 'lstm', [
558
                        '--required-batch-size-multiple', '1',
Dmytro Okhonko's avatar
Dmytro Okhonko committed
559
560
561
562
563
564
565
566
                        '--encoder-layers', '1',
                        '--encoder-hidden-size', '32',
                        '--decoder-layers', '1',
                        '--optimizer', optimizer,
                    ])
                    generate_main(data_dir)


567
def create_dummy_data(data_dir, num_examples=1000, maxlen=20, alignment=False):
568
569
570
571
572
573
574
575
576
577
578
579

    def _create_dummy_data(filename):
        data = torch.rand(num_examples * maxlen)
        data = 97 + torch.floor(26 * data).int()
        with open(os.path.join(data_dir, filename), 'w') as h:
            offset = 0
            for _ in range(num_examples):
                ex_len = random.randint(1, maxlen)
                ex_str = ' '.join(map(chr, data[offset:offset+ex_len]))
                print(ex_str, file=h)
                offset += ex_len

580
581
582
583
584
585
586
587
588
589
590
591
592
593
    def _create_dummy_alignment_data(filename_src, filename_tgt, filename):
        with open(os.path.join(data_dir, filename_src), 'r') as src_f, \
             open(os.path.join(data_dir, filename_tgt), 'r') as tgt_f, \
             open(os.path.join(data_dir, filename), 'w') as h:
                    for src, tgt in zip(src_f, tgt_f):
                        src_len = len(src.split())
                        tgt_len = len(tgt.split())
                        avg_len = (src_len + tgt_len) // 2
                        num_alignments = random.randint(avg_len // 2, 2 * avg_len)
                        src_indices = torch.floor(torch.rand(num_alignments) * src_len).int()
                        tgt_indices = torch.floor(torch.rand(num_alignments) * tgt_len).int()
                        ex_str = ' '.join(["{}-{}".format(src, tgt) for src, tgt in zip(src_indices, tgt_indices)])
                        print(ex_str, file=h)

594
595
596
597
598
599
600
    _create_dummy_data('train.in')
    _create_dummy_data('train.out')
    _create_dummy_data('valid.in')
    _create_dummy_data('valid.out')
    _create_dummy_data('test.in')
    _create_dummy_data('test.out')

601
602
603
604
    if alignment:
        _create_dummy_alignment_data('train.in', 'train.out', 'train.align')
        _create_dummy_alignment_data('valid.in', 'valid.out', 'valid.align')
        _create_dummy_alignment_data('test.in', 'test.out', 'test.align')
605

606
def preprocess_translation_data(data_dir, extra_flags=None):
607
    preprocess_parser = options.get_preprocessing_parser()
608
609
610
611
612
613
614
615
616
617
618
619
    preprocess_args = preprocess_parser.parse_args(
        [
            '--source-lang', 'in',
            '--target-lang', 'out',
            '--trainpref', os.path.join(data_dir, 'train'),
            '--validpref', os.path.join(data_dir, 'valid'),
            '--testpref', os.path.join(data_dir, 'test'),
            '--thresholdtgt', '0',
            '--thresholdsrc', '0',
            '--destdir', data_dir,
        ] + (extra_flags or []),
    )
620
621
622
    preprocess.main(preprocess_args)


Myle Ott's avatar
Myle Ott committed
623
def train_translation_model(data_dir, arch, extra_flags=None, task='translation', run_validation=False):
624
625
626
627
    train_parser = options.get_training_parser()
    train_args = options.parse_args_and_arch(
        train_parser,
        [
628
            '--task', task,
629
630
631
632
633
634
635
636
            data_dir,
            '--save-dir', data_dir,
            '--arch', arch,
            '--lr', '0.05',
            '--max-tokens', '500',
            '--max-epoch', '1',
            '--no-progress-bar',
            '--distributed-world-size', '1',
Myle Ott's avatar
Myle Ott committed
637
638
            '--source-lang', 'in',
            '--target-lang', 'out',
639
640
641
642
        ] + (extra_flags or []),
    )
    train.main(train_args)

Myle Ott's avatar
Myle Ott committed
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
    if run_validation:
        # test validation
        validate_parser = options.get_validation_parser()
        validate_args = options.parse_args_and_arch(
            validate_parser,
            [
                '--task', task,
                data_dir,
                '--path', os.path.join(data_dir, 'checkpoint_last.pt'),
                '--valid-subset', 'valid',
                '--max-tokens', '500',
                '--no-progress-bar',
            ]
        )
        validate.main(validate_args)
Myle Ott's avatar
Myle Ott committed
658

659

660
def generate_main(data_dir, extra_flags=None):
661
662
663
664
    if extra_flags is None:
        extra_flags = [
            '--print-alignment',
        ]
665
    generate_parser = options.get_generation_parser()
Myle Ott's avatar
Myle Ott committed
666
667
668
669
670
671
672
673
674
675
    generate_args = options.parse_args_and_arch(
        generate_parser,
        [
            data_dir,
            '--path', os.path.join(data_dir, 'checkpoint_last.pt'),
            '--beam', '3',
            '--batch-size', '64',
            '--max-len-b', '5',
            '--gen-subset', 'valid',
            '--no-progress-bar',
676
        ] + (extra_flags or []),
Myle Ott's avatar
Myle Ott committed
677
    )
678
679
680
681
682
683

    # evaluate model in batch mode
    generate.main(generate_args)

    # evaluate model interactively
    generate_args.buffer_size = 0
684
    generate_args.input = '-'
685
686
687
688
689
690
691
692
    generate_args.max_sentences = None
    orig_stdin = sys.stdin
    sys.stdin = StringIO('h e l l o\n')
    interactive.main(generate_args)
    sys.stdin = orig_stdin


def preprocess_lm_data(data_dir):
693
    preprocess_parser = options.get_preprocessing_parser()
694
695
696
697
698
699
700
701
702
703
    preprocess_args = preprocess_parser.parse_args([
        '--only-source',
        '--trainpref', os.path.join(data_dir, 'train.out'),
        '--validpref', os.path.join(data_dir, 'valid.out'),
        '--testpref', os.path.join(data_dir, 'test.out'),
        '--destdir', data_dir,
    ])
    preprocess.main(preprocess_args)


Myle Ott's avatar
Myle Ott committed
704
def train_language_model(data_dir, arch, extra_flags=None, run_validation=False):
705
706
707
708
    train_parser = options.get_training_parser()
    train_args = options.parse_args_and_arch(
        train_parser,
        [
Myle Ott's avatar
Myle Ott committed
709
            '--task', 'language_modeling',
Myle Ott's avatar
Myle Ott committed
710
            data_dir,
711
            '--arch', arch,
Myle Ott's avatar
Myle Ott committed
712
713
            '--optimizer', 'adam',
            '--lr', '0.0001',
714
715
716
            '--criterion', 'adaptive_loss',
            '--adaptive-softmax-cutoff', '5,10,15',
            '--max-tokens', '500',
Myle Ott's avatar
Myle Ott committed
717
            '--tokens-per-sample', '500',
718
719
            '--save-dir', data_dir,
            '--max-epoch', '1',
Myle Ott's avatar
Myle Ott committed
720
            '--no-progress-bar',
721
            '--distributed-world-size', '1',
722
            '--ddp-backend', 'no_c10d',
Myle Ott's avatar
Myle Ott committed
723
        ] + (extra_flags or []),
724
725
726
    )
    train.main(train_args)

Myle Ott's avatar
Myle Ott committed
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
    if run_validation:
        # test validation
        validate_parser = options.get_validation_parser()
        validate_args = options.parse_args_and_arch(
            validate_parser,
            [
                '--task', 'language_modeling',
                data_dir,
                '--path', os.path.join(data_dir, 'checkpoint_last.pt'),
                '--valid-subset', 'valid',
                '--max-tokens', '500',
                '--no-progress-bar',
            ]
        )
        validate.main(validate_args)
Myle Ott's avatar
Myle Ott committed
742

743
744
745

def eval_lm_main(data_dir):
    eval_lm_parser = options.get_eval_lm_parser()
Myle Ott's avatar
Myle Ott committed
746
747
748
749
750
751
752
753
    eval_lm_args = options.parse_args_and_arch(
        eval_lm_parser,
        [
            data_dir,
            '--path', os.path.join(data_dir, 'checkpoint_last.pt'),
            '--no-progress-bar',
        ],
    )
754
    eval_lm.main(eval_lm_args)
Myle Ott's avatar
Myle Ott committed
755
756
757
758


if __name__ == '__main__':
    unittest.main()