test_binaries.py 21.4 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

8
import contextlib
Myle Ott's avatar
Myle Ott committed
9
10
11
12
13
14
15
16
17
18
19
from io import StringIO
import os
import random
import sys
import tempfile
import unittest

import torch

from fairseq import options

Myle Ott's avatar
Myle Ott committed
20
21
22
23
import preprocess
import train
import generate
import interactive
24
25
26
27
28
29
30
31
32
33
34
35
36
import eval_lm


class TestTranslation(unittest.TestCase):

    def test_fconv(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en')
                generate_main(data_dir)

37
38
39
40
    def test_raw(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv_raw') as data_dir:
                create_dummy_data(data_dir)
41
42
43
                preprocess_translation_data(data_dir, ['--dataset-impl', 'raw'])
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--dataset-impl', 'raw'])
                generate_main(data_dir, ['--dataset-impl', 'raw'])
44

45
46
47
48
49
50
51
52
    def test_fp16(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fp16') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--fp16'])
                generate_main(data_dir)

Myle Ott's avatar
Myle Ott committed
53
54
55
56
57
58
59
60
    def test_memory_efficient_fp16(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_memory_efficient_fp16') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--memory-efficient-fp16'])
                generate_main(data_dir)

61
62
63
64
65
66
67
68
    def test_update_freq(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_update_freq') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--update-freq', '3'])
                generate_main(data_dir)

Myle Ott's avatar
Myle Ott committed
69
70
71
72
73
74
75
76
77
78
    def test_max_positions(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_max_positions') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                with self.assertRaises(Exception) as context:
                    train_translation_model(
                        data_dir, 'fconv_iwslt_de_en', ['--max-target-positions', '5'],
                    )
                self.assertTrue(
Myle Ott's avatar
Myle Ott committed
79
                    'skip this example with --skip-invalid-size-inputs-valid-test' in str(context.exception)
Myle Ott's avatar
Myle Ott committed
80
81
82
83
84
85
86
87
88
                )
                train_translation_model(
                    data_dir, 'fconv_iwslt_de_en',
                    ['--max-target-positions', '5', '--skip-invalid-size-inputs-valid-test'],
                )
                with self.assertRaises(Exception) as context:
                    generate_main(data_dir)
                generate_main(data_dir, ['--skip-invalid-size-inputs-valid-test'])

89
90
91
92
93
94
95
96
    def test_generation(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_sampling') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en')
                generate_main(data_dir, [
                    '--sampling',
97
                    '--temperature', '2',
98
99
100
101
102
103
104
                    '--beam', '2',
                    '--nbest', '2',
                ])
                generate_main(data_dir, [
                    '--sampling',
                    '--sampling-topk', '3',
                    '--beam', '2',
Xing Zhou's avatar
Xing Zhou committed
105
106
107
108
109
110
                    '--nbest', '2',
                ])
                generate_main(data_dir, [
                    '--sampling',
                    '--sampling-topp', '0.2',
                    '--beam', '2',
111
112
113
114
                    '--nbest', '2',
                ])
                generate_main(data_dir, ['--prefix-size', '2'])

115
116
117
118
119
    def test_lstm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_lstm') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
Myle Ott's avatar
Myle Ott committed
120
121
122
                train_translation_model(data_dir, 'lstm_wiseman_iwslt_de_en', [
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
123
124
125
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-out-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
126
127
128
129
130
131
132
133
134
135
136
                ])
                generate_main(data_dir)

    def test_lstm_bidirectional(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_lstm_bidirectional') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'lstm', [
                    '--encoder-layers', '2',
                    '--encoder-bidirectional',
137
138
139
140
                    '--encoder-hidden-size', '16',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-out-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
141
142
                    '--decoder-layers', '2',
                ])
143
144
145
146
147
148
149
                generate_main(data_dir)

    def test_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_transformer') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
150
151
152
153
154
155
                train_translation_model(data_dir, 'transformer_iwslt_de_en', [
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                ])
156
157
                generate_main(data_dir)

158
159
160
161
162
163
164
165
    def test_lightconv(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_lightconv') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'lightconv_iwslt_de_en', [
                    '--encoder-conv-type', 'lightweight',
                    '--decoder-conv-type', 'lightweight',
166
167
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
168
169
170
171
172
173
174
175
176
177
178
                ])
                generate_main(data_dir)

    def test_dynamicconv(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_dynamicconv') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'lightconv_iwslt_de_en', [
                    '--encoder-conv-type', 'dynamic',
                    '--decoder-conv-type', 'dynamic',
179
180
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
181
182
183
                ])
                generate_main(data_dir)

Myle Ott's avatar
Myle Ott committed
184
185
186
187
188
189
190
191
192
193
    def test_mixture_of_experts(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_moe') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'transformer_iwslt_de_en', [
                    '--task', 'translation_moe',
                    '--method', 'hMoElp',
                    '--mean-pool-gating-network',
                    '--num-experts', '3',
194
195
196
197
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
198
199
200
201
202
203
204
205
206
                ])
                generate_main(data_dir, [
                    '--task', 'translation_moe',
                    '--method', 'hMoElp',
                    '--mean-pool-gating-network',
                    '--num-experts', '3',
                    '--gen-expert', '0'
                ])

207
208
209
210
211
212
213
214
215

class TestStories(unittest.TestCase):

    def test_fconv_self_att_wp(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv_self_att_wp') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                config = [
216
217
                    '--encoder-layers', '[(128, 3)] * 2',
                    '--decoder-layers', '[(128, 3)] * 2',
218
219
220
221
222
                    '--decoder-attention', 'True',
                    '--encoder-attention', 'False',
                    '--gated-attention', 'True',
                    '--self-attention', 'True',
                    '--project-input', 'True',
223
224
225
226
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-out-embed-dim', '8',
                    '--multihead-self-attention-nheads', '2'
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
                ]
                train_translation_model(data_dir, 'fconv_self_att_wp', config)
                generate_main(data_dir)

                # fusion model
                os.rename(os.path.join(data_dir, 'checkpoint_last.pt'), os.path.join(data_dir, 'pretrained.pt'))
                config.extend([
                    '--pretrained', 'True',
                    '--pretrained-checkpoint', os.path.join(data_dir, 'pretrained.pt'),
                    '--save-dir', os.path.join(data_dir, 'fusion_model'),
                ])
                train_translation_model(data_dir, 'fconv_self_att_wp', config)


class TestLanguageModeling(unittest.TestCase):

    def test_fconv_lm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv_lm') as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
Myle Ott's avatar
Myle Ott committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
                train_language_model(data_dir, 'fconv_lm', [
                    '--decoder-layers', '[(850, 3)] * 2 + [(1024,4)]',
                    '--decoder-embed-dim', '280',
                    '--optimizer', 'nag',
                    '--lr', '0.1',
                ])
                eval_lm_main(data_dir)

    def test_transformer_lm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_transformer_lm') as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
                train_language_model(data_dir, 'transformer_lm', ['--add-bos-token'])
262
263
264
                eval_lm_main(data_dir)


265
class TestMaskedLanguageModel(unittest.TestCase):
266
267

    def test_legacy_masked_lm(self):
268
        with contextlib.redirect_stdout(StringIO()):
269
            with tempfile.TemporaryDirectory("test_legacy_mlm") as data_dir:
270
271
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
272
                train_legacy_masked_language_model(data_dir, "masked_lm")
273

Matt Le's avatar
Matt Le committed
274
    def _test_pretrained_masked_lm_for_translation(self, learned_pos_emb, encoder_only):
275
276
277
278
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory("test_mlm") as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
279
                train_legacy_masked_language_model(
Matt Le's avatar
Matt Le committed
280
                    data_dir,
281
                    arch="masked_lm",
Matt Le's avatar
Matt Le committed
282
283
                    extra_args=('--encoder-learned-pos',) if learned_pos_emb else ()
                )
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
                with tempfile.TemporaryDirectory(
                    "test_mlm_translation"
                ) as translation_dir:
                    create_dummy_data(translation_dir)
                    preprocess_translation_data(
                        translation_dir, extra_flags=["--joined-dictionary"]
                    )
                    # Train transformer with data_dir/checkpoint_last.pt
                    train_translation_model(
                        translation_dir,
                        arch="transformer_from_pretrained_xlm",
                        extra_flags=[
                            "--decoder-layers",
                            "1",
                            "--decoder-embed-dim",
                            "32",
                            "--decoder-attention-heads",
                            "1",
                            "--decoder-ffn-embed-dim",
                            "32",
                            "--encoder-layers",
                            "1",
                            "--encoder-embed-dim",
                            "32",
                            "--encoder-attention-heads",
                            "1",
                            "--encoder-ffn-embed-dim",
                            "32",
                            "--pretrained-xlm-checkpoint",
Bairen Yi's avatar
Bairen Yi committed
313
                            "{}/checkpoint_last.pt".format(data_dir),
314
315
316
317
318
319
                            "--activation-fn",
                            "gelu",
                            "--max-source-positions",
                            "500",
                            "--max-target-positions",
                            "500",
Matt Le's avatar
Matt Le committed
320
321
322
323
                        ] + (
                            ["--encoder-learned-pos", "--decoder-learned-pos"]
                            if learned_pos_emb else []
                        ) + (['--init-encoder-only'] if encoder_only else []),
324
325
326
                        task="translation_from_pretrained_xlm",
                    )

Matt Le's avatar
Matt Le committed
327
328
329
330
331
332
    def test_pretrained_masked_lm_for_translation_learned_pos_emb(self):
        self._test_pretrained_masked_lm_for_translation(True, False)

    def test_pretrained_masked_lm_for_translation_sinusoidal_pos_emb(self):
        self._test_pretrained_masked_lm_for_translation(False, False)

333
    def test_pretrained_masked_lm_for_translation_encoder_only(self):
Matt Le's avatar
Matt Le committed
334
        self._test_pretrained_masked_lm_for_translation(True, True)
335

336
337

def train_legacy_masked_language_model(data_dir, arch, extra_args=()):
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    train_parser = options.get_training_parser()
    # TODO: langs should be in and out right?
    train_args = options.parse_args_and_arch(
        train_parser,
        [
            "--task",
            "cross_lingual_lm",
            data_dir,
            "--arch",
            arch,
            # Optimizer args
            "--optimizer",
            "adam",
            "--lr-scheduler",
            "reduce_lr_on_plateau",
            "--lr-shrink",
            "0.5",
            "--lr",
            "0.0001",
            "--min-lr",
            "1e-09",
            # dropout, attention args
            "--dropout",
            "0.1",
            "--attention-dropout",
            "0.1",
            # MLM args
            "--criterion",
366
            "legacy_masked_lm_loss",
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
            "--masked-lm-only",
            "--monolingual-langs",
            "in,out",
            "--num-segment",
            "5",
            # Transformer args: use a small transformer model for fast training
            "--encoder-layers",
            "1",
            "--encoder-embed-dim",
            "32",
            "--encoder-attention-heads",
            "1",
            "--encoder-ffn-embed-dim",
            "32",
            # Other training args
            "--max-tokens",
            "500",
            "--tokens-per-sample",
            "500",
            "--save-dir",
            data_dir,
            "--max-epoch",
            "1",
            "--no-progress-bar",
            "--distributed-world-size",
            "1",
393
394
            "--dataset-impl",
            "raw",
Matt Le's avatar
Matt Le committed
395
        ] + list(extra_args),
396
397
398
399
    )
    train.main(train_args)


Dmytro Okhonko's avatar
Dmytro Okhonko committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
class TestCommonOptions(unittest.TestCase):

    def test_optimizers(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_optimizers') as data_dir:
                # Use just a bit of data and tiny model to keep this test runtime reasonable
                create_dummy_data(data_dir, num_examples=10, maxlen=5)
                preprocess_translation_data(data_dir)
                optimizers = ['adafactor', 'adam', 'nag', 'adagrad', 'sgd', 'adadelta']
                last_checkpoint = os.path.join(data_dir, 'checkpoint_last.pt')
                for optimizer in optimizers:
                    if os.path.exists(last_checkpoint):
                        os.remove(last_checkpoint)
                    train_translation_model(data_dir, 'lstm', [
414
                        '--required-batch-size-multiple', '1',
Dmytro Okhonko's avatar
Dmytro Okhonko committed
415
416
417
418
419
420
421
422
                        '--encoder-layers', '1',
                        '--encoder-hidden-size', '32',
                        '--decoder-layers', '1',
                        '--optimizer', optimizer,
                    ])
                    generate_main(data_dir)


423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
def create_dummy_data(data_dir, num_examples=1000, maxlen=20):

    def _create_dummy_data(filename):
        data = torch.rand(num_examples * maxlen)
        data = 97 + torch.floor(26 * data).int()
        with open(os.path.join(data_dir, filename), 'w') as h:
            offset = 0
            for _ in range(num_examples):
                ex_len = random.randint(1, maxlen)
                ex_str = ' '.join(map(chr, data[offset:offset+ex_len]))
                print(ex_str, file=h)
                offset += ex_len

    _create_dummy_data('train.in')
    _create_dummy_data('train.out')
    _create_dummy_data('valid.in')
    _create_dummy_data('valid.out')
    _create_dummy_data('test.in')
    _create_dummy_data('test.out')


444
def preprocess_translation_data(data_dir, extra_flags=None):
445
    preprocess_parser = options.get_preprocessing_parser()
446
447
448
449
450
451
452
453
454
455
456
457
    preprocess_args = preprocess_parser.parse_args(
        [
            '--source-lang', 'in',
            '--target-lang', 'out',
            '--trainpref', os.path.join(data_dir, 'train'),
            '--validpref', os.path.join(data_dir, 'valid'),
            '--testpref', os.path.join(data_dir, 'test'),
            '--thresholdtgt', '0',
            '--thresholdsrc', '0',
            '--destdir', data_dir,
        ] + (extra_flags or []),
    )
458
459
460
    preprocess.main(preprocess_args)


461
def train_translation_model(data_dir, arch, extra_flags=None, task='translation'):
462
463
464
465
    train_parser = options.get_training_parser()
    train_args = options.parse_args_and_arch(
        train_parser,
        [
466
            '--task', task,
467
468
469
470
471
472
473
474
            data_dir,
            '--save-dir', data_dir,
            '--arch', arch,
            '--lr', '0.05',
            '--max-tokens', '500',
            '--max-epoch', '1',
            '--no-progress-bar',
            '--distributed-world-size', '1',
Myle Ott's avatar
Myle Ott committed
475
476
            '--source-lang', 'in',
            '--target-lang', 'out',
477
478
479
480
481
        ] + (extra_flags or []),
    )
    train.main(train_args)


482
def generate_main(data_dir, extra_flags=None):
483
    generate_parser = options.get_generation_parser()
Myle Ott's avatar
Myle Ott committed
484
485
486
487
488
489
490
491
492
493
    generate_args = options.parse_args_and_arch(
        generate_parser,
        [
            data_dir,
            '--path', os.path.join(data_dir, 'checkpoint_last.pt'),
            '--beam', '3',
            '--batch-size', '64',
            '--max-len-b', '5',
            '--gen-subset', 'valid',
            '--no-progress-bar',
Myle Ott's avatar
Myle Ott committed
494
            '--print-alignment',
495
        ] + (extra_flags or []),
Myle Ott's avatar
Myle Ott committed
496
    )
497
498
499
500
501
502

    # evaluate model in batch mode
    generate.main(generate_args)

    # evaluate model interactively
    generate_args.buffer_size = 0
503
    generate_args.input = '-'
504
505
506
507
508
509
510
511
    generate_args.max_sentences = None
    orig_stdin = sys.stdin
    sys.stdin = StringIO('h e l l o\n')
    interactive.main(generate_args)
    sys.stdin = orig_stdin


def preprocess_lm_data(data_dir):
512
    preprocess_parser = options.get_preprocessing_parser()
513
514
515
516
517
518
519
520
521
522
    preprocess_args = preprocess_parser.parse_args([
        '--only-source',
        '--trainpref', os.path.join(data_dir, 'train.out'),
        '--validpref', os.path.join(data_dir, 'valid.out'),
        '--testpref', os.path.join(data_dir, 'test.out'),
        '--destdir', data_dir,
    ])
    preprocess.main(preprocess_args)


Myle Ott's avatar
Myle Ott committed
523
def train_language_model(data_dir, arch, extra_flags=None):
524
525
526
527
    train_parser = options.get_training_parser()
    train_args = options.parse_args_and_arch(
        train_parser,
        [
Myle Ott's avatar
Myle Ott committed
528
            '--task', 'language_modeling',
Myle Ott's avatar
Myle Ott committed
529
            data_dir,
530
            '--arch', arch,
Myle Ott's avatar
Myle Ott committed
531
532
            '--optimizer', 'adam',
            '--lr', '0.0001',
533
534
535
            '--criterion', 'adaptive_loss',
            '--adaptive-softmax-cutoff', '5,10,15',
            '--max-tokens', '500',
Myle Ott's avatar
Myle Ott committed
536
            '--tokens-per-sample', '500',
537
538
            '--save-dir', data_dir,
            '--max-epoch', '1',
Myle Ott's avatar
Myle Ott committed
539
            '--no-progress-bar',
540
            '--distributed-world-size', '1',
541
            '--ddp-backend', 'no_c10d',
Myle Ott's avatar
Myle Ott committed
542
        ] + (extra_flags or []),
543
544
545
546
547
548
    )
    train.main(train_args)


def eval_lm_main(data_dir):
    eval_lm_parser = options.get_eval_lm_parser()
Myle Ott's avatar
Myle Ott committed
549
550
551
552
553
554
555
556
    eval_lm_args = options.parse_args_and_arch(
        eval_lm_parser,
        [
            data_dir,
            '--path', os.path.join(data_dir, 'checkpoint_last.pt'),
            '--no-progress-bar',
        ],
    )
557
    eval_lm.main(eval_lm_args)
Myle Ott's avatar
Myle Ott committed
558
559
560
561


if __name__ == '__main__':
    unittest.main()