test_binaries.py 29.7 KB
Newer Older
1
# Copyright (c) Facebook, Inc. and its affiliates.
Myle Ott's avatar
Myle Ott committed
2
#
3
4
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
Myle Ott's avatar
Myle Ott committed
5

6
import contextlib
Myle Ott's avatar
Myle Ott committed
7
8
9
10
11
12
13
14
15
16
17
from io import StringIO
import os
import random
import sys
import tempfile
import unittest

import torch

from fairseq import options

Myle Ott's avatar
Myle Ott committed
18
19
20
21
import preprocess
import train
import generate
import interactive
22
import eval_lm
Myle Ott's avatar
Myle Ott committed
23
import validate
24
25
26
27
28
29
30
31
32
33
34
35


class TestTranslation(unittest.TestCase):

    def test_fconv(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en')
                generate_main(data_dir)

36
37
38
39
    def test_raw(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv_raw') as data_dir:
                create_dummy_data(data_dir)
40
41
42
                preprocess_translation_data(data_dir, ['--dataset-impl', 'raw'])
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--dataset-impl', 'raw'])
                generate_main(data_dir, ['--dataset-impl', 'raw'])
43

44
45
46
47
48
49
50
51
    def test_fp16(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fp16') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--fp16'])
                generate_main(data_dir)

Myle Ott's avatar
Myle Ott committed
52
53
54
55
56
57
58
59
    def test_memory_efficient_fp16(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_memory_efficient_fp16') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--memory-efficient-fp16'])
                generate_main(data_dir)

60
61
62
63
64
65
66
67
    def test_update_freq(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_update_freq') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--update-freq', '3'])
                generate_main(data_dir)

Myle Ott's avatar
Myle Ott committed
68
69
70
71
72
73
74
75
76
77
    def test_max_positions(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_max_positions') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                with self.assertRaises(Exception) as context:
                    train_translation_model(
                        data_dir, 'fconv_iwslt_de_en', ['--max-target-positions', '5'],
                    )
                self.assertTrue(
Myle Ott's avatar
Myle Ott committed
78
                    'skip this example with --skip-invalid-size-inputs-valid-test' in str(context.exception)
Myle Ott's avatar
Myle Ott committed
79
80
81
82
83
84
85
86
87
                )
                train_translation_model(
                    data_dir, 'fconv_iwslt_de_en',
                    ['--max-target-positions', '5', '--skip-invalid-size-inputs-valid-test'],
                )
                with self.assertRaises(Exception) as context:
                    generate_main(data_dir)
                generate_main(data_dir, ['--skip-invalid-size-inputs-valid-test'])

88
89
90
91
92
93
94
95
    def test_generation(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_sampling') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'fconv_iwslt_de_en')
                generate_main(data_dir, [
                    '--sampling',
96
                    '--temperature', '2',
97
98
99
100
101
102
103
                    '--beam', '2',
                    '--nbest', '2',
                ])
                generate_main(data_dir, [
                    '--sampling',
                    '--sampling-topk', '3',
                    '--beam', '2',
Xing Zhou's avatar
Xing Zhou committed
104
105
106
107
108
109
                    '--nbest', '2',
                ])
                generate_main(data_dir, [
                    '--sampling',
                    '--sampling-topp', '0.2',
                    '--beam', '2',
110
111
112
113
                    '--nbest', '2',
                ])
                generate_main(data_dir, ['--prefix-size', '2'])

114
115
116
117
118
    def test_lstm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_lstm') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
Myle Ott's avatar
Myle Ott committed
119
120
121
                train_translation_model(data_dir, 'lstm_wiseman_iwslt_de_en', [
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
122
123
124
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-out-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
125
126
127
128
129
130
131
132
133
134
135
                ])
                generate_main(data_dir)

    def test_lstm_bidirectional(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_lstm_bidirectional') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'lstm', [
                    '--encoder-layers', '2',
                    '--encoder-bidirectional',
136
137
138
139
                    '--encoder-hidden-size', '16',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-out-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
140
141
                    '--decoder-layers', '2',
                ])
142
143
144
145
146
147
148
                generate_main(data_dir)

    def test_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_transformer') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
149
150
151
152
153
                train_translation_model(data_dir, 'transformer_iwslt_de_en', [
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
154
                ], run_validation=True)
155
156
                generate_main(data_dir)

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def test_transformer_cross_self_attention(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_transformer_cross_self_attention') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'transformer_iwslt_de_en', [
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--no-cross-attention',
                    '--cross-self-attention',
                    '--layer-wise-attention',
                ], run_validation=True)
                generate_main(data_dir, extra_flags=[])

174
175
176
177
178
179
180
181
    def test_lightconv(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_lightconv') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'lightconv_iwslt_de_en', [
                    '--encoder-conv-type', 'lightweight',
                    '--decoder-conv-type', 'lightweight',
182
183
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
184
185
186
187
188
189
190
191
192
193
194
                ])
                generate_main(data_dir)

    def test_dynamicconv(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_dynamicconv') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'lightconv_iwslt_de_en', [
                    '--encoder-conv-type', 'dynamic',
                    '--decoder-conv-type', 'dynamic',
195
196
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
197
198
199
                ])
                generate_main(data_dir)

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    def test_cmlm_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_cmlm_transformer') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir, ['--joined-dictionary'])
                train_translation_model(data_dir, 'cmlm_transformer', [
                    '--apply-bert-init',
                    '--criterion', 'nat_loss',
                    '--noise', 'full_mask',
                    '--pred-length-offset',
                    '--length-loss-factor', '0.1'
                ], task='translation_lev')
                generate_main(data_dir, [
                    '--task', 'translation_lev',
                    '--iter-decode-max-iter', '9',
                    '--iter-decode-eos-penalty', '0',
                    '--print-step',
                ])

219
220
221
222
    def test_levenshtein_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_levenshtein_transformer') as data_dir:
                create_dummy_data(data_dir)
223
                preprocess_translation_data(data_dir, ['--joined-dictionary'])
224
225
226
227
                train_translation_model(data_dir, 'levenshtein_transformer', [
                    '--apply-bert-init', '--early-exit', '6,6,6',
                    '--criterion', 'nat_loss'
                ], task='translation_lev')
228
229
230
231
232
233
                generate_main(data_dir, [
                    '--task', 'translation_lev',
                    '--iter-decode-max-iter', '9',
                    '--iter-decode-eos-penalty', '0',
                    '--print-step',
                ])
234
235
236
237
238

    def test_nonautoregressive_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_nonautoregressive_transformer') as data_dir:
                create_dummy_data(data_dir)
239
                preprocess_translation_data(data_dir, ['--joined-dictionary'])
240
241
242
243
244
                train_translation_model(data_dir, 'nonautoregressive_transformer', [
                    '--apply-bert-init', '--src-embedding-copy', '--criterion',
                    'nat_loss', '--noise', 'full_mask', '--pred-length-offset',
                    '--length-loss-factor', '0.1'
                ], task='translation_lev')
245
246
247
248
249
250
                generate_main(data_dir, [
                    '--task', 'translation_lev',
                    '--iter-decode-max-iter', '9',
                    '--iter-decode-eos-penalty', '0',
                    '--print-step',
                ])
251
252
253
254
255

    def test_iterative_nonautoregressive_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_iterative_nonautoregressive_transformer') as data_dir:
                create_dummy_data(data_dir)
256
                preprocess_translation_data(data_dir, ['--joined-dictionary'])
257
258
259
260
261
                train_translation_model(data_dir, 'iterative_nonautoregressive_transformer', [
                    '--apply-bert-init', '--src-embedding-copy', '--criterion',
                    'nat_loss', '--noise', 'full_mask', '--stochastic-approx',
                    '--dae-ratio', '0.5', '--train-step', '3'
                ], task='translation_lev')
262
263
264
265
266
267
                generate_main(data_dir, [
                    '--task', 'translation_lev',
                    '--iter-decode-max-iter', '9',
                    '--iter-decode-eos-penalty', '0',
                    '--print-step',
                ])
268
269
270
271
272

    def test_insertion_transformer(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_insertion_transformer') as data_dir:
                create_dummy_data(data_dir)
273
                preprocess_translation_data(data_dir, ['--joined-dictionary'])
274
275
276
277
                train_translation_model(data_dir, 'insertion_transformer', [
                    '--apply-bert-init', '--criterion', 'nat_loss', '--noise',
                    'random_mask'
                ], task='translation_lev')
278
279
280
281
282
283
                generate_main(data_dir, [
                    '--task', 'translation_lev',
                    '--iter-decode-max-iter', '9',
                    '--iter-decode-eos-penalty', '0',
                    '--print-step',
                ])
284

Myle Ott's avatar
Myle Ott committed
285
286
287
288
289
290
291
292
293
294
    def test_mixture_of_experts(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_moe') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                train_translation_model(data_dir, 'transformer_iwslt_de_en', [
                    '--task', 'translation_moe',
                    '--method', 'hMoElp',
                    '--mean-pool-gating-network',
                    '--num-experts', '3',
295
296
297
298
                    '--encoder-layers', '2',
                    '--decoder-layers', '2',
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
Myle Ott's avatar
Myle Ott committed
299
300
301
302
303
304
305
306
307
                ])
                generate_main(data_dir, [
                    '--task', 'translation_moe',
                    '--method', 'hMoElp',
                    '--mean-pool-gating-network',
                    '--num-experts', '3',
                    '--gen-expert', '0'
                ])

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
    def test_alignment(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_alignment') as data_dir:
                create_dummy_data(data_dir, alignment=True)
                preprocess_translation_data(data_dir, ['--align-suffix', 'align'])
                train_translation_model(
                    data_dir,
                    'transformer_align',
                    [
                        '--encoder-layers', '2',
                        '--decoder-layers', '2',
                        '--encoder-embed-dim', '8',
                        '--decoder-embed-dim', '8',
                        '--load-alignments',
                        '--alignment-layer', '1',
                        '--criterion', 'label_smoothed_cross_entropy_with_alignment'
                    ],
                    run_validation=True,
                )
                generate_main(data_dir)

329
330
331
332
333
334
335
336
337

class TestStories(unittest.TestCase):

    def test_fconv_self_att_wp(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv_self_att_wp') as data_dir:
                create_dummy_data(data_dir)
                preprocess_translation_data(data_dir)
                config = [
338
339
                    '--encoder-layers', '[(128, 3)] * 2',
                    '--decoder-layers', '[(128, 3)] * 2',
340
341
342
343
344
                    '--decoder-attention', 'True',
                    '--encoder-attention', 'False',
                    '--gated-attention', 'True',
                    '--self-attention', 'True',
                    '--project-input', 'True',
345
346
347
348
                    '--encoder-embed-dim', '8',
                    '--decoder-embed-dim', '8',
                    '--decoder-out-embed-dim', '8',
                    '--multihead-self-attention-nheads', '2'
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
                ]
                train_translation_model(data_dir, 'fconv_self_att_wp', config)
                generate_main(data_dir)

                # fusion model
                os.rename(os.path.join(data_dir, 'checkpoint_last.pt'), os.path.join(data_dir, 'pretrained.pt'))
                config.extend([
                    '--pretrained', 'True',
                    '--pretrained-checkpoint', os.path.join(data_dir, 'pretrained.pt'),
                    '--save-dir', os.path.join(data_dir, 'fusion_model'),
                ])
                train_translation_model(data_dir, 'fconv_self_att_wp', config)


class TestLanguageModeling(unittest.TestCase):

    def test_fconv_lm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_fconv_lm') as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
Myle Ott's avatar
Myle Ott committed
370
371
372
373
374
375
376
377
378
379
380
381
382
                train_language_model(data_dir, 'fconv_lm', [
                    '--decoder-layers', '[(850, 3)] * 2 + [(1024,4)]',
                    '--decoder-embed-dim', '280',
                    '--optimizer', 'nag',
                    '--lr', '0.1',
                ])
                eval_lm_main(data_dir)

    def test_transformer_lm(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_transformer_lm') as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
Myle Ott's avatar
Myle Ott committed
383
384
385
                train_language_model(
                    data_dir, 'transformer_lm', ['--add-bos-token'], run_validation=True,
                )
386
387
388
                eval_lm_main(data_dir)


389
class TestMaskedLanguageModel(unittest.TestCase):
390
391

    def test_legacy_masked_lm(self):
392
        with contextlib.redirect_stdout(StringIO()):
393
            with tempfile.TemporaryDirectory("test_legacy_mlm") as data_dir:
394
395
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
396
                train_legacy_masked_language_model(data_dir, "masked_lm")
397

Matt Le's avatar
Matt Le committed
398
    def _test_pretrained_masked_lm_for_translation(self, learned_pos_emb, encoder_only):
399
400
401
402
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory("test_mlm") as data_dir:
                create_dummy_data(data_dir)
                preprocess_lm_data(data_dir)
403
                train_legacy_masked_language_model(
Matt Le's avatar
Matt Le committed
404
                    data_dir,
405
                    arch="masked_lm",
Matt Le's avatar
Matt Le committed
406
407
                    extra_args=('--encoder-learned-pos',) if learned_pos_emb else ()
                )
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
                with tempfile.TemporaryDirectory(
                    "test_mlm_translation"
                ) as translation_dir:
                    create_dummy_data(translation_dir)
                    preprocess_translation_data(
                        translation_dir, extra_flags=["--joined-dictionary"]
                    )
                    # Train transformer with data_dir/checkpoint_last.pt
                    train_translation_model(
                        translation_dir,
                        arch="transformer_from_pretrained_xlm",
                        extra_flags=[
                            "--decoder-layers",
                            "1",
                            "--decoder-embed-dim",
                            "32",
                            "--decoder-attention-heads",
                            "1",
                            "--decoder-ffn-embed-dim",
                            "32",
                            "--encoder-layers",
                            "1",
                            "--encoder-embed-dim",
                            "32",
                            "--encoder-attention-heads",
                            "1",
                            "--encoder-ffn-embed-dim",
                            "32",
                            "--pretrained-xlm-checkpoint",
Bairen Yi's avatar
Bairen Yi committed
437
                            "{}/checkpoint_last.pt".format(data_dir),
438
439
440
441
442
443
                            "--activation-fn",
                            "gelu",
                            "--max-source-positions",
                            "500",
                            "--max-target-positions",
                            "500",
Matt Le's avatar
Matt Le committed
444
445
446
447
                        ] + (
                            ["--encoder-learned-pos", "--decoder-learned-pos"]
                            if learned_pos_emb else []
                        ) + (['--init-encoder-only'] if encoder_only else []),
448
449
450
                        task="translation_from_pretrained_xlm",
                    )

Matt Le's avatar
Matt Le committed
451
452
453
454
455
456
    def test_pretrained_masked_lm_for_translation_learned_pos_emb(self):
        self._test_pretrained_masked_lm_for_translation(True, False)

    def test_pretrained_masked_lm_for_translation_sinusoidal_pos_emb(self):
        self._test_pretrained_masked_lm_for_translation(False, False)

457
    def test_pretrained_masked_lm_for_translation_encoder_only(self):
Matt Le's avatar
Matt Le committed
458
        self._test_pretrained_masked_lm_for_translation(True, True)
459

460
461

def train_legacy_masked_language_model(data_dir, arch, extra_args=()):
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    train_parser = options.get_training_parser()
    # TODO: langs should be in and out right?
    train_args = options.parse_args_and_arch(
        train_parser,
        [
            "--task",
            "cross_lingual_lm",
            data_dir,
            "--arch",
            arch,
            # Optimizer args
            "--optimizer",
            "adam",
            "--lr-scheduler",
            "reduce_lr_on_plateau",
            "--lr-shrink",
            "0.5",
            "--lr",
            "0.0001",
            "--min-lr",
            "1e-09",
            # dropout, attention args
            "--dropout",
            "0.1",
            "--attention-dropout",
            "0.1",
            # MLM args
            "--criterion",
490
            "legacy_masked_lm_loss",
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
            "--masked-lm-only",
            "--monolingual-langs",
            "in,out",
            "--num-segment",
            "5",
            # Transformer args: use a small transformer model for fast training
            "--encoder-layers",
            "1",
            "--encoder-embed-dim",
            "32",
            "--encoder-attention-heads",
            "1",
            "--encoder-ffn-embed-dim",
            "32",
            # Other training args
            "--max-tokens",
            "500",
            "--tokens-per-sample",
            "500",
            "--save-dir",
            data_dir,
            "--max-epoch",
            "1",
            "--no-progress-bar",
            "--distributed-world-size",
            "1",
517
518
            "--dataset-impl",
            "raw",
Matt Le's avatar
Matt Le committed
519
        ] + list(extra_args),
520
521
522
523
    )
    train.main(train_args)


Dmytro Okhonko's avatar
Dmytro Okhonko committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
class TestCommonOptions(unittest.TestCase):

    def test_optimizers(self):
        with contextlib.redirect_stdout(StringIO()):
            with tempfile.TemporaryDirectory('test_optimizers') as data_dir:
                # Use just a bit of data and tiny model to keep this test runtime reasonable
                create_dummy_data(data_dir, num_examples=10, maxlen=5)
                preprocess_translation_data(data_dir)
                optimizers = ['adafactor', 'adam', 'nag', 'adagrad', 'sgd', 'adadelta']
                last_checkpoint = os.path.join(data_dir, 'checkpoint_last.pt')
                for optimizer in optimizers:
                    if os.path.exists(last_checkpoint):
                        os.remove(last_checkpoint)
                    train_translation_model(data_dir, 'lstm', [
538
                        '--required-batch-size-multiple', '1',
Dmytro Okhonko's avatar
Dmytro Okhonko committed
539
540
541
542
543
544
545
546
                        '--encoder-layers', '1',
                        '--encoder-hidden-size', '32',
                        '--decoder-layers', '1',
                        '--optimizer', optimizer,
                    ])
                    generate_main(data_dir)


547
def create_dummy_data(data_dir, num_examples=1000, maxlen=20, alignment=False):
548
549
550
551
552
553
554
555
556
557
558
559

    def _create_dummy_data(filename):
        data = torch.rand(num_examples * maxlen)
        data = 97 + torch.floor(26 * data).int()
        with open(os.path.join(data_dir, filename), 'w') as h:
            offset = 0
            for _ in range(num_examples):
                ex_len = random.randint(1, maxlen)
                ex_str = ' '.join(map(chr, data[offset:offset+ex_len]))
                print(ex_str, file=h)
                offset += ex_len

560
561
562
563
564
565
566
567
568
569
570
571
572
573
    def _create_dummy_alignment_data(filename_src, filename_tgt, filename):
        with open(os.path.join(data_dir, filename_src), 'r') as src_f, \
             open(os.path.join(data_dir, filename_tgt), 'r') as tgt_f, \
             open(os.path.join(data_dir, filename), 'w') as h:
                    for src, tgt in zip(src_f, tgt_f):
                        src_len = len(src.split())
                        tgt_len = len(tgt.split())
                        avg_len = (src_len + tgt_len) // 2
                        num_alignments = random.randint(avg_len // 2, 2 * avg_len)
                        src_indices = torch.floor(torch.rand(num_alignments) * src_len).int()
                        tgt_indices = torch.floor(torch.rand(num_alignments) * tgt_len).int()
                        ex_str = ' '.join(["{}-{}".format(src, tgt) for src, tgt in zip(src_indices, tgt_indices)])
                        print(ex_str, file=h)

574
575
576
577
578
579
580
    _create_dummy_data('train.in')
    _create_dummy_data('train.out')
    _create_dummy_data('valid.in')
    _create_dummy_data('valid.out')
    _create_dummy_data('test.in')
    _create_dummy_data('test.out')

581
582
583
584
    if alignment:
        _create_dummy_alignment_data('train.in', 'train.out', 'train.align')
        _create_dummy_alignment_data('valid.in', 'valid.out', 'valid.align')
        _create_dummy_alignment_data('test.in', 'test.out', 'test.align')
585

586
def preprocess_translation_data(data_dir, extra_flags=None):
587
    preprocess_parser = options.get_preprocessing_parser()
588
589
590
591
592
593
594
595
596
597
598
599
    preprocess_args = preprocess_parser.parse_args(
        [
            '--source-lang', 'in',
            '--target-lang', 'out',
            '--trainpref', os.path.join(data_dir, 'train'),
            '--validpref', os.path.join(data_dir, 'valid'),
            '--testpref', os.path.join(data_dir, 'test'),
            '--thresholdtgt', '0',
            '--thresholdsrc', '0',
            '--destdir', data_dir,
        ] + (extra_flags or []),
    )
600
601
602
    preprocess.main(preprocess_args)


Myle Ott's avatar
Myle Ott committed
603
def train_translation_model(data_dir, arch, extra_flags=None, task='translation', run_validation=False):
604
605
606
607
    train_parser = options.get_training_parser()
    train_args = options.parse_args_and_arch(
        train_parser,
        [
608
            '--task', task,
609
610
611
612
613
614
615
616
            data_dir,
            '--save-dir', data_dir,
            '--arch', arch,
            '--lr', '0.05',
            '--max-tokens', '500',
            '--max-epoch', '1',
            '--no-progress-bar',
            '--distributed-world-size', '1',
Myle Ott's avatar
Myle Ott committed
617
618
            '--source-lang', 'in',
            '--target-lang', 'out',
619
620
621
622
        ] + (extra_flags or []),
    )
    train.main(train_args)

Myle Ott's avatar
Myle Ott committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
    if run_validation:
        # test validation
        validate_parser = options.get_validation_parser()
        validate_args = options.parse_args_and_arch(
            validate_parser,
            [
                '--task', task,
                data_dir,
                '--path', os.path.join(data_dir, 'checkpoint_last.pt'),
                '--valid-subset', 'valid',
                '--max-tokens', '500',
                '--no-progress-bar',
            ]
        )
        validate.main(validate_args)
Myle Ott's avatar
Myle Ott committed
638

639

640
def generate_main(data_dir, extra_flags=None):
641
642
643
644
    if extra_flags is None:
        extra_flags = [
            '--print-alignment',
        ]
645
    generate_parser = options.get_generation_parser()
Myle Ott's avatar
Myle Ott committed
646
647
648
649
650
651
652
653
654
655
    generate_args = options.parse_args_and_arch(
        generate_parser,
        [
            data_dir,
            '--path', os.path.join(data_dir, 'checkpoint_last.pt'),
            '--beam', '3',
            '--batch-size', '64',
            '--max-len-b', '5',
            '--gen-subset', 'valid',
            '--no-progress-bar',
656
        ] + (extra_flags or []),
Myle Ott's avatar
Myle Ott committed
657
    )
658
659
660
661
662
663

    # evaluate model in batch mode
    generate.main(generate_args)

    # evaluate model interactively
    generate_args.buffer_size = 0
664
    generate_args.input = '-'
665
666
667
668
669
670
671
672
    generate_args.max_sentences = None
    orig_stdin = sys.stdin
    sys.stdin = StringIO('h e l l o\n')
    interactive.main(generate_args)
    sys.stdin = orig_stdin


def preprocess_lm_data(data_dir):
673
    preprocess_parser = options.get_preprocessing_parser()
674
675
676
677
678
679
680
681
682
683
    preprocess_args = preprocess_parser.parse_args([
        '--only-source',
        '--trainpref', os.path.join(data_dir, 'train.out'),
        '--validpref', os.path.join(data_dir, 'valid.out'),
        '--testpref', os.path.join(data_dir, 'test.out'),
        '--destdir', data_dir,
    ])
    preprocess.main(preprocess_args)


Myle Ott's avatar
Myle Ott committed
684
def train_language_model(data_dir, arch, extra_flags=None, run_validation=False):
685
686
687
688
    train_parser = options.get_training_parser()
    train_args = options.parse_args_and_arch(
        train_parser,
        [
Myle Ott's avatar
Myle Ott committed
689
            '--task', 'language_modeling',
Myle Ott's avatar
Myle Ott committed
690
            data_dir,
691
            '--arch', arch,
Myle Ott's avatar
Myle Ott committed
692
693
            '--optimizer', 'adam',
            '--lr', '0.0001',
694
695
696
            '--criterion', 'adaptive_loss',
            '--adaptive-softmax-cutoff', '5,10,15',
            '--max-tokens', '500',
Myle Ott's avatar
Myle Ott committed
697
            '--tokens-per-sample', '500',
698
699
            '--save-dir', data_dir,
            '--max-epoch', '1',
Myle Ott's avatar
Myle Ott committed
700
            '--no-progress-bar',
701
            '--distributed-world-size', '1',
702
            '--ddp-backend', 'no_c10d',
Myle Ott's avatar
Myle Ott committed
703
        ] + (extra_flags or []),
704
705
706
    )
    train.main(train_args)

Myle Ott's avatar
Myle Ott committed
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
    if run_validation:
        # test validation
        validate_parser = options.get_validation_parser()
        validate_args = options.parse_args_and_arch(
            validate_parser,
            [
                '--task', 'language_modeling',
                data_dir,
                '--path', os.path.join(data_dir, 'checkpoint_last.pt'),
                '--valid-subset', 'valid',
                '--max-tokens', '500',
                '--no-progress-bar',
            ]
        )
        validate.main(validate_args)
Myle Ott's avatar
Myle Ott committed
722

723
724
725

def eval_lm_main(data_dir):
    eval_lm_parser = options.get_eval_lm_parser()
Myle Ott's avatar
Myle Ott committed
726
727
728
729
730
731
732
733
    eval_lm_args = options.parse_args_and_arch(
        eval_lm_parser,
        [
            data_dir,
            '--path', os.path.join(data_dir, 'checkpoint_last.pt'),
            '--no-progress-bar',
        ],
    )
734
    eval_lm.main(eval_lm_args)
Myle Ott's avatar
Myle Ott committed
735
736
737
738


if __name__ == '__main__':
    unittest.main()