Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Fairseq
Commits
16a72b4d
Commit
16a72b4d
authored
Jun 04, 2018
by
Myle Ott
Browse files
Add more integration tests (LM, stories, transformer, lstm)
parent
736fbee2
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
208 additions
and
95 deletions
+208
-95
tests/test_binaries.py
tests/test_binaries.py
+208
-95
No files found.
tests/test_binaries.py
View file @
16a72b4d
...
@@ -5,6 +5,7 @@
...
@@ -5,6 +5,7 @@
# the root directory of this source tree. An additional grant of patent rights
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
# can be found in the PATENTS file in the same directory.
import
contextlib
from
io
import
StringIO
from
io
import
StringIO
import
os
import
os
import
random
import
random
...
@@ -20,105 +21,217 @@ import preprocess
...
@@ -20,105 +21,217 @@ import preprocess
import
train
import
train
import
generate
import
generate
import
interactive
import
interactive
import
eval_lm
class
TestBinaries
(
unittest
.
TestCase
):
class
TestTranslation
(
unittest
.
TestCase
):
def
test_binaries
(
self
):
# comment this out to debug the unittest if it's failing
def
test_fconv
(
self
):
self
.
mock_stdout
()
with
contextlib
.
redirect_stdout
(
StringIO
()):
with
tempfile
.
TemporaryDirectory
(
'test_fconv'
)
as
data_dir
:
with
tempfile
.
TemporaryDirectory
()
as
data_dir
:
create_dummy_data
(
data_dir
)
self
.
create_dummy_data
(
data_dir
)
preprocess_translation_data
(
data_dir
)
self
.
preprocess_data
(
data_dir
)
train_translation_model
(
data_dir
,
'fconv_iwslt_de_en'
)
self
.
train_model
(
data_dir
)
generate_main
(
data_dir
)
self
.
generate
(
data_dir
)
def
test_fp16
(
self
):
self
.
unmock_stdout
()
with
contextlib
.
redirect_stdout
(
StringIO
()):
with
tempfile
.
TemporaryDirectory
(
'test_fp16'
)
as
data_dir
:
def
create_dummy_data
(
self
,
data_dir
,
num_examples
=
1000
,
maxlen
=
20
):
create_dummy_data
(
data_dir
)
preprocess_translation_data
(
data_dir
)
def
_create_dummy_data
(
filename
):
train_translation_model
(
data_dir
,
'fconv_iwslt_de_en'
,
[
'--fp16'
])
data
=
torch
.
rand
(
num_examples
*
maxlen
)
generate_main
(
data_dir
)
data
=
97
+
torch
.
floor
(
26
*
data
).
int
()
with
open
(
os
.
path
.
join
(
data_dir
,
filename
),
'w'
)
as
h
:
def
test_update_freq
(
self
):
offset
=
0
with
contextlib
.
redirect_stdout
(
StringIO
()):
for
_
in
range
(
num_examples
):
with
tempfile
.
TemporaryDirectory
(
'test_update_freq'
)
as
data_dir
:
ex_len
=
random
.
randint
(
1
,
maxlen
)
create_dummy_data
(
data_dir
)
ex_str
=
' '
.
join
(
map
(
chr
,
data
[
offset
:
offset
+
ex_len
]))
preprocess_translation_data
(
data_dir
)
print
(
ex_str
,
file
=
h
)
train_translation_model
(
data_dir
,
'fconv_iwslt_de_en'
,
[
'--update-freq'
,
'3'
])
offset
+=
ex_len
generate_main
(
data_dir
)
_create_dummy_data
(
'train.in'
)
def
test_lstm
(
self
):
_create_dummy_data
(
'train.out'
)
with
contextlib
.
redirect_stdout
(
StringIO
()):
_create_dummy_data
(
'valid.in'
)
with
tempfile
.
TemporaryDirectory
(
'test_lstm'
)
as
data_dir
:
_create_dummy_data
(
'valid.out'
)
create_dummy_data
(
data_dir
)
_create_dummy_data
(
'test.in'
)
preprocess_translation_data
(
data_dir
)
_create_dummy_data
(
'test.out'
)
train_translation_model
(
data_dir
,
'lstm_wiseman_iwslt_de_en'
)
generate_main
(
data_dir
)
def
preprocess_data
(
self
,
data_dir
):
preprocess_parser
=
preprocess
.
get_parser
()
def
test_transformer
(
self
):
preprocess_args
=
preprocess_parser
.
parse_args
([
with
contextlib
.
redirect_stdout
(
StringIO
()):
with
tempfile
.
TemporaryDirectory
(
'test_transformer'
)
as
data_dir
:
create_dummy_data
(
data_dir
)
preprocess_translation_data
(
data_dir
)
train_translation_model
(
data_dir
,
'transformer_iwslt_de_en'
)
generate_main
(
data_dir
)
class
TestStories
(
unittest
.
TestCase
):
def
test_fconv_self_att_wp
(
self
):
with
contextlib
.
redirect_stdout
(
StringIO
()):
with
tempfile
.
TemporaryDirectory
(
'test_fconv_self_att_wp'
)
as
data_dir
:
create_dummy_data
(
data_dir
)
preprocess_translation_data
(
data_dir
)
config
=
[
'--encoder-layers'
,
'[(512, 3)] * 2'
,
'--decoder-layers'
,
'[(512, 3)] * 2'
,
'--decoder-attention'
,
'True'
,
'--encoder-attention'
,
'False'
,
'--gated-attention'
,
'True'
,
'--self-attention'
,
'True'
,
'--project-input'
,
'True'
,
]
train_translation_model
(
data_dir
,
'fconv_self_att_wp'
,
config
)
generate_main
(
data_dir
)
# fusion model
os
.
rename
(
os
.
path
.
join
(
data_dir
,
'checkpoint_last.pt'
),
os
.
path
.
join
(
data_dir
,
'pretrained.pt'
))
config
.
extend
([
'--pretrained'
,
'True'
,
'--pretrained-checkpoint'
,
os
.
path
.
join
(
data_dir
,
'pretrained.pt'
),
'--save-dir'
,
os
.
path
.
join
(
data_dir
,
'fusion_model'
),
])
train_translation_model
(
data_dir
,
'fconv_self_att_wp'
,
config
)
class
TestLanguageModeling
(
unittest
.
TestCase
):
def
test_fconv_lm
(
self
):
with
contextlib
.
redirect_stdout
(
StringIO
()):
with
tempfile
.
TemporaryDirectory
(
'test_fconv_lm'
)
as
data_dir
:
create_dummy_data
(
data_dir
)
preprocess_lm_data
(
data_dir
)
train_language_model
(
data_dir
,
'fconv_lm'
)
eval_lm_main
(
data_dir
)
def
create_dummy_data
(
data_dir
,
num_examples
=
1000
,
maxlen
=
20
):
def
_create_dummy_data
(
filename
):
data
=
torch
.
rand
(
num_examples
*
maxlen
)
data
=
97
+
torch
.
floor
(
26
*
data
).
int
()
with
open
(
os
.
path
.
join
(
data_dir
,
filename
),
'w'
)
as
h
:
offset
=
0
for
_
in
range
(
num_examples
):
ex_len
=
random
.
randint
(
1
,
maxlen
)
ex_str
=
' '
.
join
(
map
(
chr
,
data
[
offset
:
offset
+
ex_len
]))
print
(
ex_str
,
file
=
h
)
offset
+=
ex_len
_create_dummy_data
(
'train.in'
)
_create_dummy_data
(
'train.out'
)
_create_dummy_data
(
'valid.in'
)
_create_dummy_data
(
'valid.out'
)
_create_dummy_data
(
'test.in'
)
_create_dummy_data
(
'test.out'
)
def
preprocess_translation_data
(
data_dir
):
preprocess_parser
=
preprocess
.
get_parser
()
preprocess_args
=
preprocess_parser
.
parse_args
([
'--source-lang'
,
'in'
,
'--target-lang'
,
'out'
,
'--trainpref'
,
os
.
path
.
join
(
data_dir
,
'train'
),
'--validpref'
,
os
.
path
.
join
(
data_dir
,
'valid'
),
'--testpref'
,
os
.
path
.
join
(
data_dir
,
'test'
),
'--thresholdtgt'
,
'0'
,
'--thresholdsrc'
,
'0'
,
'--destdir'
,
data_dir
,
])
preprocess
.
main
(
preprocess_args
)
def
train_translation_model
(
data_dir
,
arch
,
extra_flags
=
None
):
train_parser
=
options
.
get_training_parser
()
train_args
=
options
.
parse_args_and_arch
(
train_parser
,
[
data_dir
,
'--save-dir'
,
data_dir
,
'--arch'
,
arch
,
'--optimizer'
,
'nag'
,
'--lr'
,
'0.05'
,
'--max-tokens'
,
'500'
,
'--max-epoch'
,
'1'
,
'--no-progress-bar'
,
'--distributed-world-size'
,
'1'
,
'--source-lang'
,
'in'
,
'--source-lang'
,
'in'
,
'--target-lang'
,
'out'
,
'--target-lang'
,
'out'
,
'--trainpref'
,
os
.
path
.
join
(
data_dir
,
'train'
),
]
+
(
extra_flags
or
[]),
'--validpref'
,
os
.
path
.
join
(
data_dir
,
'valid'
),
)
'--testpref'
,
os
.
path
.
join
(
data_dir
,
'test'
),
train
.
main
(
train_args
)
'--thresholdtgt'
,
'0'
,
'--thresholdsrc'
,
'0'
,
'--destdir'
,
data_dir
,
def
generate_main
(
data_dir
):
])
generate_parser
=
options
.
get_generation_parser
()
preprocess
.
main
(
preprocess_args
)
generate_args
=
generate_parser
.
parse_args
([
data_dir
,
def
train_model
(
self
,
data_dir
):
'--path'
,
os
.
path
.
join
(
data_dir
,
'checkpoint_last.pt'
),
train_parser
=
options
.
get_training_parser
()
'--beam'
,
'3'
,
train_args
=
options
.
parse_args_and_arch
(
'--batch-size'
,
'64'
,
train_parser
,
'--max-len-b'
,
'5'
,
[
'--gen-subset'
,
'valid'
,
data_dir
,
'--no-progress-bar'
,
'--arch'
,
'fconv_iwslt_de_en'
,
])
'--optimizer'
,
'nag'
,
'--lr'
,
'0.05'
,
# evaluate model in batch mode
'--max-tokens'
,
'500'
,
generate
.
main
(
generate_args
)
'--save-dir'
,
data_dir
,
'--max-epoch'
,
'1'
,
# evaluate model interactively
'--no-progress-bar'
,
generate_args
.
buffer_size
=
0
'--distributed-world-size'
,
'1'
,
generate_args
.
max_sentences
=
None
'--source-lang'
,
'in'
,
orig_stdin
=
sys
.
stdin
'--target-lang'
,
'out'
,
sys
.
stdin
=
StringIO
(
'h e l l o
\n
'
)
],
interactive
.
main
(
generate_args
)
)
sys
.
stdin
=
orig_stdin
train
.
main
(
train_args
)
def
generate
(
self
,
data_dir
):
def
preprocess_lm_data
(
data_dir
):
generate_parser
=
options
.
get_generation_parser
()
preprocess_parser
=
preprocess
.
get_parser
()
generate_args
=
generate_parser
.
parse_args
([
preprocess_args
=
preprocess_parser
.
parse_args
([
'--only-source'
,
'--trainpref'
,
os
.
path
.
join
(
data_dir
,
'train.out'
),
'--validpref'
,
os
.
path
.
join
(
data_dir
,
'valid.out'
),
'--testpref'
,
os
.
path
.
join
(
data_dir
,
'test.out'
),
'--destdir'
,
data_dir
,
])
preprocess
.
main
(
preprocess_args
)
def
train_language_model
(
data_dir
,
arch
):
train_parser
=
options
.
get_training_parser
()
train_args
=
options
.
parse_args_and_arch
(
train_parser
,
[
data_dir
,
data_dir
,
'--path'
,
os
.
path
.
join
(
data_dir
,
'checkpoint_best.pt'
),
'--arch'
,
arch
,
'--beam'
,
'5'
,
'--optimizer'
,
'nag'
,
'--batch-size'
,
'32'
,
'--lr'
,
'1.0'
,
'--gen-subset'
,
'valid'
,
'--criterion'
,
'adaptive_loss'
,
'--adaptive-softmax-cutoff'
,
'5,10,15'
,
'--decoder-layers'
,
'[(850, 3)] * 2 + [(1024,4)]'
,
'--decoder-embed-dim'
,
'280'
,
'--max-tokens'
,
'500'
,
'--max-target-positions'
,
'500'
,
'--save-dir'
,
data_dir
,
'--max-epoch'
,
'1'
,
'--no-progress-bar'
,
'--no-progress-bar'
,
])
'--distributed-world-size'
,
'1'
,
],
# evaluate model in batch mode
)
generate
.
main
(
generate_args
)
train
.
main
(
train_args
)
# evaluate model interactively
generate_args
.
buffer_size
=
0
def
eval_lm_main
(
data_dir
):
generate_args
.
max_sentences
=
None
eval_lm_parser
=
options
.
get_eval_lm_parser
()
orig_stdin
=
sys
.
stdin
eval_lm_args
=
eval_lm_parser
.
parse_args
([
sys
.
stdin
=
StringIO
(
'h e l l o
\n
'
)
data_dir
,
interactive
.
main
(
generate_args
)
'--path'
,
os
.
path
.
join
(
data_dir
,
'checkpoint_last.pt'
),
sys
.
stdin
=
orig_stdin
'--no-progress-bar'
,
])
def
mock_stdout
(
self
):
eval_lm
.
main
(
eval_lm_args
)
self
.
_orig_stdout
=
sys
.
stdout
sys
.
stdout
=
StringIO
()
def
unmock_stdout
(
self
):
if
hasattr
(
self
,
'_orig_stdout'
):
sys
.
stdout
=
self
.
_orig_stdout
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment