test_ssd_offload.py 17 KB
Newer Older
1
2
3
4
5
6
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

"""
7
Testing SsdFlatParameter and SsdTensorHandle modules.
8
9
"""

10
import filecmp
11
import functools
12
import os
13
14
15
16
17
18
import tempfile

import numpy as np
import pytest
import torch

19
20
pytestmark = pytest.mark.skip(reason="ssd offload to be removed to simplify the code")

21
22
23
24
25
26
try:
    import fairscale.experimental.nn.ssd_offload as so
except ImportError as ie:
    # Note: We need the nightly version for SSD offload to work. Hence I am checking for the next PyTorch release.
    pytestmark = pytest.mark.skipif(True, reason=ie.msg)
    pass
27
28
29
30
31
32
33
34
35
36
37


def _init():
    torch.manual_seed(0)
    np.random.seed(0)


def test_write_read():
    _init()

    with tempfile.NamedTemporaryFile() as f:
38
        ref_tensor = torch.rand(128, dtype=torch.float32)
39
40
41
42
43
44
45
46
        test_tensor = torch.zeros_like(ref_tensor)
        assert not torch.equal(ref_tensor, test_tensor)
        so.write(ref_tensor, f.name)
        so.read(test_tensor, f.name)
        assert torch.equal(ref_tensor, test_tensor)


def test_ssd_handle_dispatch_fwd():
47
48
    _init()

49
    with tempfile.NamedTemporaryFile() as f:
50
        orig_tensor = torch.randn(128)
51
52
53
54
55
56
57
58
59
60
61
62
63
64
        ssd_handle = so.SsdTensorHandle.from_tensor(orig_tensor)
        ssd_handle.set_file_params(f.name, 0)
        ssd_handle.to_file(release_tensor_after_write=True)

        assert torch.equal(ssd_handle.to_tensor(), orig_tensor)

        # This should trigger the torch_dispatch code and write
        # back the results to the file
        ssd_handle.add_(1)
        plus1_tensor = orig_tensor.add(1)
        assert torch.equal(ssd_handle.to_tensor(), plus1_tensor)


def test_ssd_handle_dispatch_bwd():
65
66
    _init()

67
68
69
70
71
72
73
74
75
76
77
78
79
80
    with tempfile.NamedTemporaryFile() as f:
        orig_tensor = torch.randn((4, 4), requires_grad=True)
        orig_copy = orig_tensor.clone().detach().requires_grad_(True)
        ssd_handle = so.SsdTensorHandle.from_tensor(orig_tensor)
        ssd_handle.set_file_params(f.name, 0)
        ssd_handle.to_file(release_tensor_after_write=True)

        assert torch.equal(ssd_handle.to_tensor(), orig_tensor)

        y1 = ssd_handle + 1
        y2 = orig_copy + 1
        y1.sum().backward()
        y2.sum().backward()

81
        assert torch.equal(ssd_handle.grad, orig_copy.grad)
82
83


84
@pytest.mark.skip("broken at head")
85
86
87
88
89
90
91
92
93
94
95
96
def test_ssd_handle_dispatch_bwd_hook():
    _init()

    def post_backward_hook(name, grad):
        print(f"BACKWARD HOOK for tensor {name} CALLED")

    with tempfile.NamedTemporaryFile() as f:
        orig_tensor = torch.randn((4, 4), requires_grad=True)
        orig_copy = orig_tensor.clone().detach().requires_grad_(True)
        ssd_handle = so.SsdTensorHandle.from_tensor(orig_tensor)
        ssd_handle.set_file_params(f.name, 0)
        ssd_handle.to_file(release_tensor_after_write=True)
97
        one = torch.ones(1, requires_grad=True).cuda()
98
99
100
101

        orig_copy = ssd_handle.data
        cuda_copy = ssd_handle.to("cuda").detach().requires_grad_(True)
        ssd_handle.data = cuda_copy
102

103
104
105
106
107
108
109
110
        ssd_handle.register_hook(functools.partial(post_backward_hook, "ssd_handle"))
        one.register_hook(functools.partial(post_backward_hook, "one"))

        y1 = ssd_handle + one
        y1.sum().backward()


def test_ssd_handle_train_simple():
111
112
    _init()

113
114
    with tempfile.NamedTemporaryFile() as f:
        orig_tensor = torch.randn((4, 4), requires_grad=True)
115

116
117
118
119
        with torch.no_grad():
            orig_copy = torch.empty_like(orig_tensor)
            orig_copy.copy_(orig_tensor)
            orig_copy.requires_grad = True
120

121
        ssd_handle = so.SsdTensorHandle.from_tensor(orig_tensor)
122
        ssd_handle.flush_on_dirty = False
123
124
        ssd_handle.set_file_params(f.name, 0)
        ssd_handle.to_file(release_tensor_after_write=True)
125

126
127
128
        assert torch.equal(ssd_handle.to_tensor(), orig_tensor)
        optimizer_ssd = torch.optim.SGD([ssd_handle], lr=0.1)
        optimizer_orig = torch.optim.SGD([orig_copy], lr=0.1)
129

130
131
132
        y1 = ssd_handle + 1
        optimizer_ssd.zero_grad()
        y1.sum().backward()
133
        assert ssd_handle.storage_state is so.StorageState.ON_CPU_CLEAN
134
        optimizer_ssd.step()
135
        assert ssd_handle.storage_state is so.StorageState.ON_CPU_DIRTY
136

137
138
139
140
        y2 = orig_copy + 1
        optimizer_orig.zero_grad()
        y2.sum().backward()
        optimizer_orig.step()
141

142
        assert torch.equal(ssd_handle.to_tensor(), orig_copy)
143
144


145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
def test_torch_save_load_ssd_flat_param_on_disk():
    _init()
    orig_file = tempfile.NamedTemporaryFile(prefix="tensor")
    checkpoint_file = tempfile.NamedTemporaryFile(prefix="checkpoint", suffix=".pt")
    checkpoint_load_directory = tempfile.TemporaryDirectory(prefix="checkpoint_dir")

    # TENSOR_SHAPE = (1024, 1024, 2048)
    # use smaller shape for unit tests
    TENSOR_SHAPE = (1024, 321)
    ref_tensors = [torch.rand(TENSOR_SHAPE, dtype=torch.float32) for i in range(4)]
    ssd_handle = so.SsdFlatParameter.from_tensors(ref_tensors, False)
    ssd_handle.set_file_params(orig_file.name, 0)
    ssd_handle.to_file()
    ref_tensors = []

    # after deleting ref_tensor, memory usage should be very low
    # For save it shouldn't be more than 10x so.DEFAULT_CHUNK_SIZE
    with so.CheckpointPathContextManager(override_path=checkpoint_load_directory.name):
        so.torch_saver.save(ssd_handle, checkpoint_file.name)
    # below line saves file to checkpoint_load_directory/orig_file.name
    # Memory usage here should be O(1000 * so.DEFAULT_CHUNK_SIZE)
    # 1000x because that's how many elements the python unpickler
    # will buffer before passing to the SsdTensor
    test_ssd_handle = torch.load(checkpoint_file)
    head, tail = os.path.split(orig_file.name)
    assert filecmp.cmp(orig_file.name, os.path.join(checkpoint_load_directory.name, tail), shallow=False)


def test_torch_save_load_ssd_flat_param_on_mem():
    _init()
    orig_file = tempfile.NamedTemporaryFile(prefix="tensor")
    checkpoint_file = tempfile.NamedTemporaryFile(prefix="checkpoint", suffix=".pt")
    checkpoint_load_directory = tempfile.TemporaryDirectory(prefix="checkpoint_dir")

    # TENSOR_SHAPE = (1024, 1024, 2048)
    # use smaller shape for unit tests
    TENSOR_SHAPE = (1024, 321)
    ref_tensors = [torch.rand(TENSOR_SHAPE, dtype=torch.float32) for i in range(4)]
    ssd_handle = so.SsdFlatParameter.from_tensors(ref_tensors, False)
    ssd_handle.set_file_params(orig_file.name, 0)
    ref_tensors = []

    # after deleting ref_tensor, memory usage should be very low
    # For save it shouldn't be more than 10x so.DEFAULT_CHUNK_SIZE
    with so.CheckpointPathContextManager(override_path=checkpoint_load_directory.name):
        so.torch_saver.save(ssd_handle, checkpoint_file.name)
    # below line saves file to checkpoint_load_directory/orig_file.name
    # Memory usage here should be O(1000 * so.DEFAULT_CHUNK_SIZE)
    # 1000x because that's how many elements the python unpickler
    # will buffer before passing to the SsdTensor
    test_ssd_handle = torch.load(checkpoint_file)
    assert torch.equal(ssd_handle, test_ssd_handle)


def test_ssd_param_train_simple():
200
201
202
    _init()
    with tempfile.NamedTemporaryFile() as f:
        orig_tensor = torch.randn((4, 4))
203

204
205
206
        with torch.no_grad():
            orig_copy = torch.empty_like(orig_tensor)
            orig_copy.copy_(orig_tensor)
207
            param = torch.nn.Parameter(orig_copy)
208

209
210
        ssd_param = so.SsdParameter(orig_tensor.shape, orig_tensor.dtype)
        ssd_param.point_to_tensor(orig_copy)
211
        ssd_param.flush_on_dirty = False
212
213
        ssd_param.set_file_params(f.name, 0)
        ssd_param.to_file(release_tensor_after_write=True)
214

215
216
        assert torch.equal(ssd_param.to_tensor(), orig_tensor)
        optimizer_ssd = torch.optim.SGD([ssd_param], lr=0.1)
217
        optimizer_orig = torch.optim.SGD([param], lr=0.1)
218

219
        y1 = ssd_param + 1
220
221
        optimizer_ssd.zero_grad()
        y1.sum().backward()
222
223
224
        # Test to see if Dirty is being calculated correctly when optimizer modifies
        # ssd_param
        assert ssd_param.storage_state is so.StorageState.ON_CPU_CLEAN
225
        optimizer_ssd.step()
226
        assert ssd_param.storage_state is so.StorageState.ON_CPU_DIRTY
227

228
229
230
231
        y2 = param + 1
        optimizer_orig.zero_grad()
        y2.sum().backward()
        optimizer_orig.step()
232

233
        assert torch.equal(ssd_param.to_tensor(), param)
234
235


236
def test_ssd_flat_parameter_basic():
237
238
    _init()
    with tempfile.NamedTemporaryFile() as f:
239
240
        refa_param = torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32))
        refb_param = torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32))
241
        refc_param = torch.nn.Parameter(torch.rand(128, dtype=torch.float32))
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        ssd_flat_param = so.SsdFlatParameter.from_tensors([refa_param, refb_param, refc_param], direct_to_file=False)
        ssd_flat_param.set_file_params(f.name, 0)

        param_views = list(ssd_flat_param.get_param_views())

        assert refa_param.shape == param_views[0].shape
        assert refb_param.shape == param_views[1].shape
        assert refc_param.shape == param_views[2].shape

        assert torch.equal(refa_param, param_views[0])
        assert torch.equal(refb_param, param_views[1])
        assert torch.equal(refc_param, param_views[2])
        ssd_flat_param.to_file()

        assert not ssd_flat_param.is_available()
        first_value = param_views[0][0][0].item()
        assert ssd_flat_param.is_available()
        assert first_value == refa_param[0][0].item()


def test_ssd_flat_parameter_view_modify():
    _init()
    with tempfile.NamedTemporaryFile() as f:
        refa_param = torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32), requires_grad=False)
        refb_param = torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32), requires_grad=False)
267
        refc_param = torch.nn.Parameter(torch.rand(128, dtype=torch.float32), requires_grad=False)
268
        ssd_flat_param = so.SsdFlatParameter.from_tensors([refa_param, refb_param, refc_param], direct_to_file=False)
269
        ssd_flat_param.set_file_params(f.name, 0)
270
271
272
273
274
275
276
277
278
279
280
281
282
        ssd_flat_param.flush_on_dirty = False

        param_views = list(ssd_flat_param.get_param_views())

        assert ssd_flat_param.storage_state == so.StorageState.ON_CPU_DIRTY
        ssd_flat_param.to_file()
        assert ssd_flat_param.storage_state == so.StorageState.ON_DISK
        assert param_views[0].tensor is None

        param_views[0] += 0.1
        assert ssd_flat_param.storage_state == so.StorageState.ON_CPU_DIRTY


283
@pytest.mark.skip("broken at head")
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
def test_ssd_flat_parameter_view_bwd():
    _init()

    hooks_called = []

    def post_backward_hook(name, hooks_called, *grads):
        print(f"BACKWARD HOOK for tensor {name} CALLED")
        hooks_called.append(name)

    with tempfile.NamedTemporaryFile() as f:
        refa_param = (
            torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32), requires_grad=True)
            .to("cpu")
            .detach()
            .requires_grad_()
        )
        refb_param = (
            torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32), requires_grad=True)
            .to("cpu")
            .detach()
            .requires_grad_()
        )
        refc_param = (
307
            torch.nn.Parameter(torch.rand(128, dtype=torch.float32), requires_grad=True)
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
            .to("cpu")
            .detach()
            .requires_grad_()
        )
        ssd_flat_param = so.SsdFlatParameter.from_tensors(
            [refa_param, refb_param, refc_param], direct_to_file=True, filename=f.name, offset=0
        )
        orig_copy = ssd_flat_param.data
        cuda_copy = ssd_flat_param.to("cuda").detach().requires_grad_()
        cpu_copy = ssd_flat_param.to("cpu").detach().requires_grad_()

        p_tmp = ssd_flat_param.expand_as(ssd_flat_param)  # Get a grad_fn on p_tmp.
        assert p_tmp.grad_fn is not None
        grad_acc = p_tmp.grad_fn.next_functions[0][0]  # Gets its GradAccumulation object.
        grad_acc.register_hook(functools.partial(post_backward_hook, "GradAccumulation_orig", hooks_called))

        ssd_flat_param.data = cuda_copy
325
        one = torch.ones(1, requires_grad=True, device=ssd_flat_param.device)
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        y1 = ssd_flat_param.views[0] + one
        y2 = cuda_copy + 1

        # ssd_flat_param.to_file()
        # ssd_flat_param.data = orig_copy

        p_tmp = ssd_flat_param.expand_as(ssd_flat_param)  # Get a grad_fn on p_tmp.
        assert p_tmp.grad_fn is not None
        grad_acc = p_tmp.grad_fn.next_functions[0][0]  # Gets its GradAccumulation object.
        grad_acc.register_hook(functools.partial(post_backward_hook, "GradAccumulation_cuda", hooks_called))
        ssd_flat_param.views[0].register_hook(
            functools.partial(post_backward_hook, "ssd_flat_param.views[0]", hooks_called)
        )
        ssd_flat_param.register_hook(functools.partial(post_backward_hook, "ssd_flat_param", hooks_called))
        one.register_hook(functools.partial(post_backward_hook, "one", hooks_called))

        y1.sum().backward()
        y2.sum().backward()

        assert "GradAccumulation_cuda" in hooks_called
        assert "ssd_flat_param.views[0]" in hooks_called
        assert "ssd_flat_param" in hooks_called
        assert "one" in hooks_called


351
@pytest.mark.skip("broken at head")
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
def test_ssd_flat_parameter_view_bwd_parameterization():
    _init()

    hooks_called = []

    def post_backward_hook(name, hooks_called, *grads):
        print(f"BACKWARD HOOK for tensor {name} CALLED")
        hooks_called.append(name)

    with tempfile.NamedTemporaryFile() as f:
        layer1 = torch.nn.Linear(32, 4, bias=False)
        layer2 = torch.nn.Linear(32, 4, bias=False)
        layer3 = torch.nn.Linear(128, 1, bias=False)
        ssd_flat_param = so.SsdFlatParameter.from_tensors(
            [layer1.weight, layer2.weight, layer3.weight], direct_to_file=False, filename=f.name, offset=0
        )
        torch.nn.utils.parametrize.register_parametrization(
            layer1, "weight", so.SsdFlatParameterViewParameterization(ssd_flat_param, 0)
        )
        torch.nn.utils.parametrize.register_parametrization(
            layer2, "weight", so.SsdFlatParameterViewParameterization(ssd_flat_param, 1)
        )
        torch.nn.utils.parametrize.register_parametrization(
            layer3, "weight", so.SsdFlatParameterViewParameterization(ssd_flat_param, 2)
        )

        orig_copy = ssd_flat_param.data
        cuda_copy = ssd_flat_param.to("cuda").detach().requires_grad_()
        cpu_copy = ssd_flat_param.to("cpu").detach().requires_grad_()

        p_tmp = ssd_flat_param.expand_as(ssd_flat_param)  # Get a grad_fn on p_tmp.
        assert p_tmp.grad_fn is not None
        grad_acc = p_tmp.grad_fn.next_functions[0][0]  # Gets its GradAccumulation object.
        grad_acc.register_hook(functools.partial(post_backward_hook, "GradAccumulation_orig", hooks_called))

        ssd_flat_param.to_file(release_tensor_after_write=False)
        ssd_flat_param.data = cuda_copy
        one = torch.ones(layer1.weight.shape, requires_grad=True, device=ssd_flat_param.device)
        y1 = layer1.forward(one)
        y2 = cuda_copy + 1

        # ssd_flat_param.to_file()
        # ssd_flat_param.data = orig_copy

        p_tmp = ssd_flat_param.expand_as(ssd_flat_param)  # Get a grad_fn on p_tmp.
        assert p_tmp.grad_fn is not None
        grad_acc = p_tmp.grad_fn.next_functions[0][0]  # Gets its GradAccumulation object.
        grad_acc.register_hook(functools.partial(post_backward_hook, "GradAccumulation_cuda", hooks_called))
        ssd_flat_param.views[0].register_hook(
            functools.partial(post_backward_hook, "ssd_flat_param.views[0]", hooks_called)
        )
        ssd_flat_param.register_hook(functools.partial(post_backward_hook, "ssd_flat_param", hooks_called))
        one.register_hook(functools.partial(post_backward_hook, "one", hooks_called))

        y1.sum().backward()
        y2.sum().backward()

        assert "GradAccumulation_cuda" in hooks_called
        assert "ssd_flat_param.views[0]" in hooks_called
        assert "ssd_flat_param" in hooks_called
        assert "one" in hooks_called


def test_ssd_flat_parameter_direct_to_file():
    _init()
    with tempfile.NamedTemporaryFile() as f:
        refa_param = torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32))
        refb_param = torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32))
420
        refc_param = torch.nn.Parameter(torch.rand(128, dtype=torch.float32))
421
422
423
        ssd_flat_param = so.SsdFlatParameter.from_tensors(
            [refa_param, refb_param, refc_param], direct_to_file=True, filename=f.name, offset=0
        )
424

425
        param_views = list(ssd_flat_param.get_param_views())
426

427
428
429
        assert refa_param.shape == param_views[0].shape
        assert refb_param.shape == param_views[1].shape
        assert refc_param.shape == param_views[2].shape
430

431
432
433
434
        assert torch.equal(refa_param, param_views[0])
        assert torch.equal(refb_param, param_views[1])
        assert torch.equal(refc_param, param_views[2])
        ssd_flat_param.to_file()
435
436
437
438
439

        assert not ssd_flat_param.is_available()
        first_value = param_views[0][0][0].item()
        assert ssd_flat_param.is_available()
        assert first_value == refa_param[0][0].item()