test_ssd_offload.py 7.96 KB
Newer Older
1
2
3
4
5
6
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

"""
7
Testing SsdFlatParameter and SsdTensorHandle modules.
8
9
"""

10
11
import filecmp
import os
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import tempfile

import numpy as np
import pytest
import torch

import fairscale.experimental.nn.ssd_offload as so
from fairscale.utils import torch_version

# Note: We need the nightly version for SSD offload to work. Hence I am checking for the next PyTorch release.
pytestmark = pytest.mark.skipif(torch_version() < (1, 11, 0), reason="requires torch version >= 1.11.0")


def _init():
    torch.manual_seed(0)
    np.random.seed(0)


def test_write_read():
    _init()

    with tempfile.NamedTemporaryFile() as f:
        ref_tensor = torch.rand((128), dtype=torch.float32)
        test_tensor = torch.zeros_like(ref_tensor)
        assert not torch.equal(ref_tensor, test_tensor)
        so.write(ref_tensor, f.name)
        so.read(test_tensor, f.name)
        assert torch.equal(ref_tensor, test_tensor)


def test_ssd_handle_dispatch_fwd():
43
44
    _init()

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    with tempfile.NamedTemporaryFile() as f:
        orig_tensor = torch.randn((128))
        ssd_handle = so.SsdTensorHandle.from_tensor(orig_tensor)
        ssd_handle.set_file_params(f.name, 0)
        ssd_handle.to_file(release_tensor_after_write=True)

        assert torch.equal(ssd_handle.to_tensor(), orig_tensor)

        # This should trigger the torch_dispatch code and write
        # back the results to the file
        ssd_handle.add_(1)
        plus1_tensor = orig_tensor.add(1)
        assert torch.equal(ssd_handle.to_tensor(), plus1_tensor)


def test_ssd_handle_dispatch_bwd():
61
62
    _init()

63
64
65
66
67
68
69
70
71
72
73
74
75
76
    with tempfile.NamedTemporaryFile() as f:
        orig_tensor = torch.randn((4, 4), requires_grad=True)
        orig_copy = orig_tensor.clone().detach().requires_grad_(True)
        ssd_handle = so.SsdTensorHandle.from_tensor(orig_tensor)
        ssd_handle.set_file_params(f.name, 0)
        ssd_handle.to_file(release_tensor_after_write=True)

        assert torch.equal(ssd_handle.to_tensor(), orig_tensor)

        y1 = ssd_handle + 1
        y2 = orig_copy + 1
        y1.sum().backward()
        y2.sum().backward()

77
        assert torch.equal(ssd_handle.grad, orig_copy.grad)
78
79


80
def test_ssd_handle_train_simple():
81
82
    _init()

83
84
    with tempfile.NamedTemporaryFile() as f:
        orig_tensor = torch.randn((4, 4), requires_grad=True)
85

86
87
88
89
        with torch.no_grad():
            orig_copy = torch.empty_like(orig_tensor)
            orig_copy.copy_(orig_tensor)
            orig_copy.requires_grad = True
90

91
92
93
        ssd_handle = so.SsdTensorHandle.from_tensor(orig_tensor)
        ssd_handle.set_file_params(f.name, 0)
        ssd_handle.to_file(release_tensor_after_write=True)
94

95
96
97
        assert torch.equal(ssd_handle.to_tensor(), orig_tensor)
        optimizer_ssd = torch.optim.SGD([ssd_handle], lr=0.1)
        optimizer_orig = torch.optim.SGD([orig_copy], lr=0.1)
98

99
100
101
102
        y1 = ssd_handle + 1
        optimizer_ssd.zero_grad()
        y1.sum().backward()
        optimizer_ssd.step()
103

104
105
106
107
        y2 = orig_copy + 1
        optimizer_orig.zero_grad()
        y2.sum().backward()
        optimizer_orig.step()
108

109
110
111
        # make sure we are using the file version not the cached tensor
        ssd_handle.point_to_file(f.name, 0)
        assert torch.equal(ssd_handle.to_tensor(), orig_copy)
112
113


114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
def test_torch_save_load_ssd_flat_param_on_disk():
    _init()
    orig_file = tempfile.NamedTemporaryFile(prefix="tensor")
    checkpoint_file = tempfile.NamedTemporaryFile(prefix="checkpoint", suffix=".pt")
    checkpoint_load_directory = tempfile.TemporaryDirectory(prefix="checkpoint_dir")

    # TENSOR_SHAPE = (1024, 1024, 2048)
    # use smaller shape for unit tests
    TENSOR_SHAPE = (1024, 321)
    ref_tensors = [torch.rand(TENSOR_SHAPE, dtype=torch.float32) for i in range(4)]
    ssd_handle = so.SsdFlatParameter.from_tensors(ref_tensors, False)
    ssd_handle.set_file_params(orig_file.name, 0)
    ssd_handle.to_file()
    ref_tensors = []

    # after deleting ref_tensor, memory usage should be very low
    # For save it shouldn't be more than 10x so.DEFAULT_CHUNK_SIZE
    with so.CheckpointPathContextManager(override_path=checkpoint_load_directory.name):
        so.torch_saver.save(ssd_handle, checkpoint_file.name)
    # below line saves file to checkpoint_load_directory/orig_file.name
    # Memory usage here should be O(1000 * so.DEFAULT_CHUNK_SIZE)
    # 1000x because that's how many elements the python unpickler
    # will buffer before passing to the SsdTensor
    test_ssd_handle = torch.load(checkpoint_file)
    head, tail = os.path.split(orig_file.name)
    assert filecmp.cmp(orig_file.name, os.path.join(checkpoint_load_directory.name, tail), shallow=False)


def test_torch_save_load_ssd_flat_param_on_mem():
    _init()
    orig_file = tempfile.NamedTemporaryFile(prefix="tensor")
    checkpoint_file = tempfile.NamedTemporaryFile(prefix="checkpoint", suffix=".pt")
    checkpoint_load_directory = tempfile.TemporaryDirectory(prefix="checkpoint_dir")

    # TENSOR_SHAPE = (1024, 1024, 2048)
    # use smaller shape for unit tests
    TENSOR_SHAPE = (1024, 321)
    ref_tensors = [torch.rand(TENSOR_SHAPE, dtype=torch.float32) for i in range(4)]
    ssd_handle = so.SsdFlatParameter.from_tensors(ref_tensors, False)
    ssd_handle.set_file_params(orig_file.name, 0)
    ref_tensors = []

    # after deleting ref_tensor, memory usage should be very low
    # For save it shouldn't be more than 10x so.DEFAULT_CHUNK_SIZE
    with so.CheckpointPathContextManager(override_path=checkpoint_load_directory.name):
        so.torch_saver.save(ssd_handle, checkpoint_file.name)
    # below line saves file to checkpoint_load_directory/orig_file.name
    # Memory usage here should be O(1000 * so.DEFAULT_CHUNK_SIZE)
    # 1000x because that's how many elements the python unpickler
    # will buffer before passing to the SsdTensor
    test_ssd_handle = torch.load(checkpoint_file)
    assert torch.equal(ssd_handle, test_ssd_handle)


def test_ssd_param_train_simple():
169
170
171
    _init()
    with tempfile.NamedTemporaryFile() as f:
        orig_tensor = torch.randn((4, 4))
172

173
174
175
        with torch.no_grad():
            orig_copy = torch.empty_like(orig_tensor)
            orig_copy.copy_(orig_tensor)
176
            param = torch.nn.Parameter(orig_copy)
177

178
179
180
181
        ssd_param = so.SsdParameter(orig_tensor.shape, orig_tensor.dtype)
        ssd_param.point_to_tensor(orig_copy)
        ssd_param.set_file_params(f.name, 0)
        ssd_param.to_file(release_tensor_after_write=True)
182

183
184
        assert torch.equal(ssd_param.to_tensor(), orig_tensor)
        optimizer_ssd = torch.optim.SGD([ssd_param], lr=0.1)
185
        optimizer_orig = torch.optim.SGD([param], lr=0.1)
186

187
        y1 = ssd_param + 1
188
189
190
        optimizer_ssd.zero_grad()
        y1.sum().backward()
        optimizer_ssd.step()
191

192
193
194
195
        y2 = param + 1
        optimizer_orig.zero_grad()
        y2.sum().backward()
        optimizer_orig.step()
196

197
        # make sure we are using the file version not the cached tensor
198
199
        ssd_param.point_to_file(f.name, 0)
        assert torch.equal(ssd_param.to_tensor(), param)
200
201


202
def test_ssd_flat_parameter_basic():
203
204
    _init()
    with tempfile.NamedTemporaryFile() as f:
205
206
207
        refa_param = torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32))
        refb_param = torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32))
        refc_param = torch.nn.Parameter(torch.rand((128), dtype=torch.float32))
208
209
        ssd_flat_param = so.SsdFlatParameter.from_tensors([refa_param, refb_param, refc_param], False)
        ssd_flat_param.set_file_params(f.name, 0)
210

211
        param_views = list(ssd_flat_param.get_param_views())
212

213
214
215
        assert refa_param.shape == param_views[0].shape
        assert refb_param.shape == param_views[1].shape
        assert refc_param.shape == param_views[2].shape
216

217
218
219
220
        assert torch.equal(refa_param, param_views[0])
        assert torch.equal(refb_param, param_views[1])
        assert torch.equal(refc_param, param_views[2])
        ssd_flat_param.to_file()