test_ssd_offload.py 16.9 KB
Newer Older
1
2
3
4
5
6
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

"""
7
Testing SsdFlatParameter and SsdTensorHandle modules.
8
9
"""

10
import filecmp
11
import functools
12
import os
13
14
15
16
17
18
import tempfile

import numpy as np
import pytest
import torch

19
20
21
22
23
24
try:
    import fairscale.experimental.nn.ssd_offload as so
except ImportError as ie:
    # Note: We need the nightly version for SSD offload to work. Hence I am checking for the next PyTorch release.
    pytestmark = pytest.mark.skipif(True, reason=ie.msg)
    pass
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44


def _init():
    torch.manual_seed(0)
    np.random.seed(0)


def test_write_read():
    _init()

    with tempfile.NamedTemporaryFile() as f:
        ref_tensor = torch.rand((128), dtype=torch.float32)
        test_tensor = torch.zeros_like(ref_tensor)
        assert not torch.equal(ref_tensor, test_tensor)
        so.write(ref_tensor, f.name)
        so.read(test_tensor, f.name)
        assert torch.equal(ref_tensor, test_tensor)


def test_ssd_handle_dispatch_fwd():
45
46
    _init()

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    with tempfile.NamedTemporaryFile() as f:
        orig_tensor = torch.randn((128))
        ssd_handle = so.SsdTensorHandle.from_tensor(orig_tensor)
        ssd_handle.set_file_params(f.name, 0)
        ssd_handle.to_file(release_tensor_after_write=True)

        assert torch.equal(ssd_handle.to_tensor(), orig_tensor)

        # This should trigger the torch_dispatch code and write
        # back the results to the file
        ssd_handle.add_(1)
        plus1_tensor = orig_tensor.add(1)
        assert torch.equal(ssd_handle.to_tensor(), plus1_tensor)


def test_ssd_handle_dispatch_bwd():
63
64
    _init()

65
66
67
68
69
70
71
72
73
74
75
76
77
78
    with tempfile.NamedTemporaryFile() as f:
        orig_tensor = torch.randn((4, 4), requires_grad=True)
        orig_copy = orig_tensor.clone().detach().requires_grad_(True)
        ssd_handle = so.SsdTensorHandle.from_tensor(orig_tensor)
        ssd_handle.set_file_params(f.name, 0)
        ssd_handle.to_file(release_tensor_after_write=True)

        assert torch.equal(ssd_handle.to_tensor(), orig_tensor)

        y1 = ssd_handle + 1
        y2 = orig_copy + 1
        y1.sum().backward()
        y2.sum().backward()

79
        assert torch.equal(ssd_handle.grad, orig_copy.grad)
80
81


82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def test_ssd_handle_dispatch_bwd_hook():
    _init()

    def post_backward_hook(name, grad):
        print(f"BACKWARD HOOK for tensor {name} CALLED")

    with tempfile.NamedTemporaryFile() as f:
        orig_tensor = torch.randn((4, 4), requires_grad=True)
        orig_copy = orig_tensor.clone().detach().requires_grad_(True)
        ssd_handle = so.SsdTensorHandle.from_tensor(orig_tensor)
        ssd_handle.set_file_params(f.name, 0)
        ssd_handle.to_file(release_tensor_after_write=True)
        one = torch.ones((1), requires_grad=True).cuda()

        orig_copy = ssd_handle.data
        cuda_copy = ssd_handle.to("cuda").detach().requires_grad_(True)
        ssd_handle.data = cuda_copy
99

100
101
102
103
104
105
106
107
        ssd_handle.register_hook(functools.partial(post_backward_hook, "ssd_handle"))
        one.register_hook(functools.partial(post_backward_hook, "one"))

        y1 = ssd_handle + one
        y1.sum().backward()


def test_ssd_handle_train_simple():
108
109
    _init()

110
111
    with tempfile.NamedTemporaryFile() as f:
        orig_tensor = torch.randn((4, 4), requires_grad=True)
112

113
114
115
116
        with torch.no_grad():
            orig_copy = torch.empty_like(orig_tensor)
            orig_copy.copy_(orig_tensor)
            orig_copy.requires_grad = True
117

118
        ssd_handle = so.SsdTensorHandle.from_tensor(orig_tensor)
119
        ssd_handle.flush_on_dirty = False
120
121
        ssd_handle.set_file_params(f.name, 0)
        ssd_handle.to_file(release_tensor_after_write=True)
122

123
124
125
        assert torch.equal(ssd_handle.to_tensor(), orig_tensor)
        optimizer_ssd = torch.optim.SGD([ssd_handle], lr=0.1)
        optimizer_orig = torch.optim.SGD([orig_copy], lr=0.1)
126

127
128
129
        y1 = ssd_handle + 1
        optimizer_ssd.zero_grad()
        y1.sum().backward()
130
        assert ssd_handle.storage_state is so.StorageState.ON_CPU_CLEAN
131
        optimizer_ssd.step()
132
        assert ssd_handle.storage_state is so.StorageState.ON_CPU_DIRTY
133

134
135
136
137
        y2 = orig_copy + 1
        optimizer_orig.zero_grad()
        y2.sum().backward()
        optimizer_orig.step()
138

139
        assert torch.equal(ssd_handle.to_tensor(), orig_copy)
140
141


142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
def test_torch_save_load_ssd_flat_param_on_disk():
    _init()
    orig_file = tempfile.NamedTemporaryFile(prefix="tensor")
    checkpoint_file = tempfile.NamedTemporaryFile(prefix="checkpoint", suffix=".pt")
    checkpoint_load_directory = tempfile.TemporaryDirectory(prefix="checkpoint_dir")

    # TENSOR_SHAPE = (1024, 1024, 2048)
    # use smaller shape for unit tests
    TENSOR_SHAPE = (1024, 321)
    ref_tensors = [torch.rand(TENSOR_SHAPE, dtype=torch.float32) for i in range(4)]
    ssd_handle = so.SsdFlatParameter.from_tensors(ref_tensors, False)
    ssd_handle.set_file_params(orig_file.name, 0)
    ssd_handle.to_file()
    ref_tensors = []

    # after deleting ref_tensor, memory usage should be very low
    # For save it shouldn't be more than 10x so.DEFAULT_CHUNK_SIZE
    with so.CheckpointPathContextManager(override_path=checkpoint_load_directory.name):
        so.torch_saver.save(ssd_handle, checkpoint_file.name)
    # below line saves file to checkpoint_load_directory/orig_file.name
    # Memory usage here should be O(1000 * so.DEFAULT_CHUNK_SIZE)
    # 1000x because that's how many elements the python unpickler
    # will buffer before passing to the SsdTensor
    test_ssd_handle = torch.load(checkpoint_file)
    head, tail = os.path.split(orig_file.name)
    assert filecmp.cmp(orig_file.name, os.path.join(checkpoint_load_directory.name, tail), shallow=False)


def test_torch_save_load_ssd_flat_param_on_mem():
    _init()
    orig_file = tempfile.NamedTemporaryFile(prefix="tensor")
    checkpoint_file = tempfile.NamedTemporaryFile(prefix="checkpoint", suffix=".pt")
    checkpoint_load_directory = tempfile.TemporaryDirectory(prefix="checkpoint_dir")

    # TENSOR_SHAPE = (1024, 1024, 2048)
    # use smaller shape for unit tests
    TENSOR_SHAPE = (1024, 321)
    ref_tensors = [torch.rand(TENSOR_SHAPE, dtype=torch.float32) for i in range(4)]
    ssd_handle = so.SsdFlatParameter.from_tensors(ref_tensors, False)
    ssd_handle.set_file_params(orig_file.name, 0)
    ref_tensors = []

    # after deleting ref_tensor, memory usage should be very low
    # For save it shouldn't be more than 10x so.DEFAULT_CHUNK_SIZE
    with so.CheckpointPathContextManager(override_path=checkpoint_load_directory.name):
        so.torch_saver.save(ssd_handle, checkpoint_file.name)
    # below line saves file to checkpoint_load_directory/orig_file.name
    # Memory usage here should be O(1000 * so.DEFAULT_CHUNK_SIZE)
    # 1000x because that's how many elements the python unpickler
    # will buffer before passing to the SsdTensor
    test_ssd_handle = torch.load(checkpoint_file)
    assert torch.equal(ssd_handle, test_ssd_handle)


def test_ssd_param_train_simple():
197
198
199
    _init()
    with tempfile.NamedTemporaryFile() as f:
        orig_tensor = torch.randn((4, 4))
200

201
202
203
        with torch.no_grad():
            orig_copy = torch.empty_like(orig_tensor)
            orig_copy.copy_(orig_tensor)
204
            param = torch.nn.Parameter(orig_copy)
205

206
207
        ssd_param = so.SsdParameter(orig_tensor.shape, orig_tensor.dtype)
        ssd_param.point_to_tensor(orig_copy)
208
        ssd_param.flush_on_dirty = False
209
210
        ssd_param.set_file_params(f.name, 0)
        ssd_param.to_file(release_tensor_after_write=True)
211

212
213
        assert torch.equal(ssd_param.to_tensor(), orig_tensor)
        optimizer_ssd = torch.optim.SGD([ssd_param], lr=0.1)
214
        optimizer_orig = torch.optim.SGD([param], lr=0.1)
215

216
        y1 = ssd_param + 1
217
218
        optimizer_ssd.zero_grad()
        y1.sum().backward()
219
220
221
        # Test to see if Dirty is being calculated correctly when optimizer modifies
        # ssd_param
        assert ssd_param.storage_state is so.StorageState.ON_CPU_CLEAN
222
        optimizer_ssd.step()
223
        assert ssd_param.storage_state is so.StorageState.ON_CPU_DIRTY
224

225
226
227
228
        y2 = param + 1
        optimizer_orig.zero_grad()
        y2.sum().backward()
        optimizer_orig.step()
229

230
        assert torch.equal(ssd_param.to_tensor(), param)
231
232


233
def test_ssd_flat_parameter_basic():
234
235
    _init()
    with tempfile.NamedTemporaryFile() as f:
236
237
238
        refa_param = torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32))
        refb_param = torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32))
        refc_param = torch.nn.Parameter(torch.rand((128), dtype=torch.float32))
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        ssd_flat_param = so.SsdFlatParameter.from_tensors([refa_param, refb_param, refc_param], direct_to_file=False)
        ssd_flat_param.set_file_params(f.name, 0)

        param_views = list(ssd_flat_param.get_param_views())

        assert refa_param.shape == param_views[0].shape
        assert refb_param.shape == param_views[1].shape
        assert refc_param.shape == param_views[2].shape

        assert torch.equal(refa_param, param_views[0])
        assert torch.equal(refb_param, param_views[1])
        assert torch.equal(refc_param, param_views[2])
        ssd_flat_param.to_file()

        assert not ssd_flat_param.is_available()
        first_value = param_views[0][0][0].item()
        assert ssd_flat_param.is_available()
        assert first_value == refa_param[0][0].item()


def test_ssd_flat_parameter_view_modify():
    _init()
    with tempfile.NamedTemporaryFile() as f:
        refa_param = torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32), requires_grad=False)
        refb_param = torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32), requires_grad=False)
        refc_param = torch.nn.Parameter(torch.rand((128), dtype=torch.float32), requires_grad=False)
        ssd_flat_param = so.SsdFlatParameter.from_tensors([refa_param, refb_param, refc_param], direct_to_file=False)
266
        ssd_flat_param.set_file_params(f.name, 0)
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
        ssd_flat_param.flush_on_dirty = False

        param_views = list(ssd_flat_param.get_param_views())

        assert ssd_flat_param.storage_state == so.StorageState.ON_CPU_DIRTY
        ssd_flat_param.to_file()
        assert ssd_flat_param.storage_state == so.StorageState.ON_DISK
        assert param_views[0].tensor is None

        param_views[0] += 0.1
        assert ssd_flat_param.storage_state == so.StorageState.ON_CPU_DIRTY


def test_ssd_flat_parameter_view_bwd():
    _init()

    hooks_called = []

    def post_backward_hook(name, hooks_called, *grads):
        print(f"BACKWARD HOOK for tensor {name} CALLED")
        hooks_called.append(name)

    with tempfile.NamedTemporaryFile() as f:
        refa_param = (
            torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32), requires_grad=True)
            .to("cpu")
            .detach()
            .requires_grad_()
        )
        refb_param = (
            torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32), requires_grad=True)
            .to("cpu")
            .detach()
            .requires_grad_()
        )
        refc_param = (
            torch.nn.Parameter(torch.rand((128), dtype=torch.float32), requires_grad=True)
            .to("cpu")
            .detach()
            .requires_grad_()
        )
        ssd_flat_param = so.SsdFlatParameter.from_tensors(
            [refa_param, refb_param, refc_param], direct_to_file=True, filename=f.name, offset=0
        )
        orig_copy = ssd_flat_param.data
        cuda_copy = ssd_flat_param.to("cuda").detach().requires_grad_()
        cpu_copy = ssd_flat_param.to("cpu").detach().requires_grad_()

        p_tmp = ssd_flat_param.expand_as(ssd_flat_param)  # Get a grad_fn on p_tmp.
        assert p_tmp.grad_fn is not None
        grad_acc = p_tmp.grad_fn.next_functions[0][0]  # Gets its GradAccumulation object.
        grad_acc.register_hook(functools.partial(post_backward_hook, "GradAccumulation_orig", hooks_called))

        ssd_flat_param.data = cuda_copy
        one = torch.ones((1), requires_grad=True, device=ssd_flat_param.device)
        y1 = ssd_flat_param.views[0] + one
        y2 = cuda_copy + 1

        # ssd_flat_param.to_file()
        # ssd_flat_param.data = orig_copy

        p_tmp = ssd_flat_param.expand_as(ssd_flat_param)  # Get a grad_fn on p_tmp.
        assert p_tmp.grad_fn is not None
        grad_acc = p_tmp.grad_fn.next_functions[0][0]  # Gets its GradAccumulation object.
        grad_acc.register_hook(functools.partial(post_backward_hook, "GradAccumulation_cuda", hooks_called))
        ssd_flat_param.views[0].register_hook(
            functools.partial(post_backward_hook, "ssd_flat_param.views[0]", hooks_called)
        )
        ssd_flat_param.register_hook(functools.partial(post_backward_hook, "ssd_flat_param", hooks_called))
        one.register_hook(functools.partial(post_backward_hook, "one", hooks_called))

        y1.sum().backward()
        y2.sum().backward()

        assert "GradAccumulation_cuda" in hooks_called
        assert "ssd_flat_param.views[0]" in hooks_called
        assert "ssd_flat_param" in hooks_called
        assert "one" in hooks_called


def test_ssd_flat_parameter_view_bwd_parameterization():
    _init()

    hooks_called = []

    def post_backward_hook(name, hooks_called, *grads):
        print(f"BACKWARD HOOK for tensor {name} CALLED")
        hooks_called.append(name)

    with tempfile.NamedTemporaryFile() as f:
        layer1 = torch.nn.Linear(32, 4, bias=False)
        layer2 = torch.nn.Linear(32, 4, bias=False)
        layer3 = torch.nn.Linear(128, 1, bias=False)
        ssd_flat_param = so.SsdFlatParameter.from_tensors(
            [layer1.weight, layer2.weight, layer3.weight], direct_to_file=False, filename=f.name, offset=0
        )
        torch.nn.utils.parametrize.register_parametrization(
            layer1, "weight", so.SsdFlatParameterViewParameterization(ssd_flat_param, 0)
        )
        torch.nn.utils.parametrize.register_parametrization(
            layer2, "weight", so.SsdFlatParameterViewParameterization(ssd_flat_param, 1)
        )
        torch.nn.utils.parametrize.register_parametrization(
            layer3, "weight", so.SsdFlatParameterViewParameterization(ssd_flat_param, 2)
        )

        orig_copy = ssd_flat_param.data
        cuda_copy = ssd_flat_param.to("cuda").detach().requires_grad_()
        cpu_copy = ssd_flat_param.to("cpu").detach().requires_grad_()

        p_tmp = ssd_flat_param.expand_as(ssd_flat_param)  # Get a grad_fn on p_tmp.
        assert p_tmp.grad_fn is not None
        grad_acc = p_tmp.grad_fn.next_functions[0][0]  # Gets its GradAccumulation object.
        grad_acc.register_hook(functools.partial(post_backward_hook, "GradAccumulation_orig", hooks_called))

        ssd_flat_param.to_file(release_tensor_after_write=False)
        ssd_flat_param.data = cuda_copy
        one = torch.ones(layer1.weight.shape, requires_grad=True, device=ssd_flat_param.device)
        y1 = layer1.forward(one)
        y2 = cuda_copy + 1

        # ssd_flat_param.to_file()
        # ssd_flat_param.data = orig_copy

        p_tmp = ssd_flat_param.expand_as(ssd_flat_param)  # Get a grad_fn on p_tmp.
        assert p_tmp.grad_fn is not None
        grad_acc = p_tmp.grad_fn.next_functions[0][0]  # Gets its GradAccumulation object.
        grad_acc.register_hook(functools.partial(post_backward_hook, "GradAccumulation_cuda", hooks_called))
        ssd_flat_param.views[0].register_hook(
            functools.partial(post_backward_hook, "ssd_flat_param.views[0]", hooks_called)
        )
        ssd_flat_param.register_hook(functools.partial(post_backward_hook, "ssd_flat_param", hooks_called))
        one.register_hook(functools.partial(post_backward_hook, "one", hooks_called))

        y1.sum().backward()
        y2.sum().backward()

        assert "GradAccumulation_cuda" in hooks_called
        assert "ssd_flat_param.views[0]" in hooks_called
        assert "ssd_flat_param" in hooks_called
        assert "one" in hooks_called


def test_ssd_flat_parameter_direct_to_file():
    _init()
    with tempfile.NamedTemporaryFile() as f:
        refa_param = torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32))
        refb_param = torch.nn.Parameter(torch.rand((32, 4), dtype=torch.float32))
        refc_param = torch.nn.Parameter(torch.rand((128), dtype=torch.float32))
        ssd_flat_param = so.SsdFlatParameter.from_tensors(
            [refa_param, refb_param, refc_param], direct_to_file=True, filename=f.name, offset=0
        )
419

420
        param_views = list(ssd_flat_param.get_param_views())
421

422
423
424
        assert refa_param.shape == param_views[0].shape
        assert refb_param.shape == param_views[1].shape
        assert refc_param.shape == param_views[2].shape
425

426
427
428
429
        assert torch.equal(refa_param, param_views[0])
        assert torch.equal(refb_param, param_views[1])
        assert torch.equal(refc_param, param_views[2])
        ssd_flat_param.to_file()
430
431
432
433
434

        assert not ssd_flat_param.is_available()
        first_value = param_views[0][0][0].item()
        assert ssd_flat_param.is_available()
        assert first_value == refa_param[0][0].item()