test_oss.py 28.5 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

6
7
8
9
# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

10

11
12
import copy
from math import inf
13
import tempfile
14
from typing import Type, cast
15
import unittest
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
16

17
import numpy as np
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
18
19
20
21
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
22
from torch.nn.parallel import DistributedDataParallel as DDP
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
23
24

import fairscale.optim as optim
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
25
from fairscale.utils.testing import skip_if_no_cuda, skip_if_single_gpu
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
26

27
28
29
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO  # type: ignore
DEVICE = "cuda" if torch.cuda.is_available() else torch.device("cpu")

30
31
32
33
34
35
36
37
38
try:
    from torch.distributed import broadcast_object_list  # noqa

    _torch_broadcast_object = True
except ImportError:
    from fairscale.optim.utils import broadcast_object  # noqa

    _torch_broadcast_object = False

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
39

40
41
42
def dist_init(rank, world_size, tempfile_name, backend=BACKEND):
    url = "file://" + tempfile_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
43
44


45
46
47
48
class TestSingleRank(unittest.TestCase):
    """
    All the following tests do not check for inter-process communication
    """
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
49

50
51
    def setUp(self):
        dist_init(0, 1, tempfile.mkstemp()[1])
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
52

53
54
    def tearDown(self):
        torch.distributed.destroy_process_group()
55

56
57
58
    def test_create(self):
        params = [torch.rand(1)]
        o = optim.OSS(params, lr=0.01)
59

60
61
62
    def test_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1, momentum=0.9)
63
        x.backward()
64
65
66
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)
67
        o.zero_grad()
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        o.consolidate_state_dict()  # Sync state dict in between replicas - even if there are none
        state_dict = o.state_dict()

        # Check that the state dict is pytorch-compliant key wise
        assert "param_groups" in state_dict.keys()
        assert "state" in state_dict.keys()

        # Check that the pulled state is what we expect, and that we have all the expected keys
        assert state_dict["param_groups"][0]["lr"] == 0.1
        assert state_dict["param_groups"][0]["momentum"] == 0.9
        assert not state_dict["param_groups"][0]["nesterov"]
        assert state_dict["param_groups"][0]["weight_decay"] == 0.0
        assert state_dict["param_groups"][0]["dampening"] == 0.0

        # Check that the pulled state and the .param_groups attribute are in sync
        for k in state_dict["param_groups"][0].keys():
            if k != "params":
                assert state_dict["param_groups"][0][k] == o.param_groups[0][k]

        # Check that it's correctly loaded
        o = optim.OSS([x], lr=0.01)
        o.load_state_dict(state_dict)
        # Check that state is correct and on proper device
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)

        # We should now be using a lr of 0.1, both within the optimizer
        # and as exposed by the .param_groups attribute
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
97
        o.step()
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        assert x == torch.tensor([0.71], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.9], device=DEVICE)

        # Check that the exposed param_groups are on the proper device
        assert o.param_groups[0]["params"][0].device == x.device

    def test_lr_scheduler(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        x2 = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.01)
        o2 = torch.optim.SGD([x2], lr=0.01)
        s = torch.optim.lr_scheduler.StepLR(o, 1)
        s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
        for _ in range(5):
            x.backward()
            o.zero_grad()
            o.step()
            s.step()
            x2.backward()
            o2.zero_grad()
            o2.step()
            s2.step()
            assert x == x2

    def test_step_with_kwargs(self):
        class SGDWithStepKWArg(torch.optim.SGD):
            def step(self, closure=None, kwarg=[]):
                super().step()
                kwarg.append(5)

        kwarg = []
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithStepKWArg, lr=0.1)
        x.backward()
        o.step(0, kwarg=kwarg)
        assert kwarg == [5]
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_step_with_extra_inner_key(self):
        class SGDWithNewKey(torch.optim.SGD):
            # Dummy optimizer which adds a new key to the param groups
            def step(self, closure=None):
                super().step()
                self.param_groups[0]["new_key"] = 0.1

        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithNewKey, lr=0.1)
        x.backward()
        o.step()
        assert o.param_groups[0]["new_key"] == 0.1
        assert x == torch.tensor([0.9], device=DEVICE)
149

150
151
152
153
    def test_step_without_closure(self):
        class SGDWithoutClosure(torch.optim.SGD):
            def step(self):
                return super().step()
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithoutClosure, lr=0.1)
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_local_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1)
        local_state_dict = o.local_state_dict()
        o = optim.OSS([x], lr=0.01)
        o.load_local_state_dict(local_state_dict)
        # We should now be using a lr of 0.1.
        assert o.optim.param_groups[0]["lr"] == 0.1
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_implicit_local_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1)
        local_state_dict = o.state_dict()
        o = optim.OSS([x], lr=0.01)
        o.load_state_dict(local_state_dict)
        # We should now be using a lr of 0.1.
        assert o.optim.param_groups[0]["lr"] == 0.1
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)
186
187


188
189
def run_test_add_param_group(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
190
191
192
193

    # Test with all parameters trainable to begin with
    def all_trainable():
        params = []
194
195
196
        sizes = [9, 7, 5, 3]
        sizes_world = sizes * world_size
        for size in sizes_world[:-1]:
197
198
199
200
201
202
203
204
205
206
207
208
            params.append(torch.rand(size, 1))

        # Make sure that the params are trainable, enforces size-based partitioning
        for p in params:
            p.requires_grad = True

        o = optim.OSS(params, lr=0.1)

        assert len(o.param_groups) == 1
        o.add_param_group({"params": [torch.rand(3, 1)]})

        assert len(o.param_groups) == 2
209
210
211

        # Verify that added group is added to the correct partition making all have the same number of elements
        assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == sum(sizes)
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        assert len(o.optim.param_groups) == 2

    # Test a pathological config with a first big non-trainable param
    def some_trainable():
        params = []
        for size in [100, 3, 5, 2, 6, 4]:
            params.append(torch.rand(size, 1))

        # Make sure that the params are trainable, enforces size-based partitioning
        for p in params[1:]:
            p.requires_grad = True

        o = optim.OSS(params, lr=0.1)

        assert len(o.param_groups) == 1
        o.add_param_group({"params": [torch.rand(3, 1)]})

        assert len(o.param_groups) == 2
        assert len(o.optim.param_groups) == 2

    all_trainable()
    some_trainable()
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
234

235
236
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
237
238

def test_add_param_group():
239
    world_size = 4
240
    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
241
242
        world_size = min(world_size, torch.cuda.device_count())

243
244
    temp_file_name = tempfile.mkstemp()[1]
    mp.spawn(run_test_add_param_group, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
245
246


247
248
def run_test_zero_grad(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
249
250
251
252
253
254
255
256
257
258
259
    x = torch.rand(1)
    m = torch.nn.Linear(1, 1)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    assert m.weight.grad
    assert m.bias.grad
    o.zero_grad()
    assert not m.weight.grad
    assert not m.bias.grad

260
261
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
262
263
264

def test_zero_grad():
    world_size = 2
265
266
267
    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
        world_size = min(world_size, torch.cuda.device_count())

268
269
    temp_file_name = tempfile.mkstemp()[1]
    mp.spawn(run_test_zero_grad, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
270
271


272
273
def run_test_step(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    x = torch.tensor([float(rank + 1)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[1.0]])
    m.bias.data = torch.tensor([2.0])
    m.to(rank)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size
    o.step()
    assert m.weight == torch.tensor([[0.75]], device=rank)
    assert m.bias == torch.tensor([1.85], device=rank)

289
290
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
291

Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
292
@skip_if_single_gpu
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
293
def test_step():
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
294
    world_size = 2
295
296
297
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
298
299


300
301
def run_test_step_with_closure(rank, world_size, tempfile_name, optimizer=None):
    dist_init(rank, world_size, tempfile_name)
302

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
303
304
305
306
307
308
309
310
311
312
313
314
    x_val = rank + 1
    weight = 1.0
    bias = 2.0
    error = 1.0
    target = torch.tensor([x_val * weight + bias + error], device=rank)
    loss_fn = torch.nn.L1Loss()

    x = torch.tensor([float(x_val)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[weight]])
    m.bias.data = torch.tensor([bias])
    m.to(rank)
315

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
316
    o = optim.OSS(m.parameters(), lr=0.1)
317

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size

    def closure():
        o.zero_grad()
        output = m(x)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    loss = o.step(closure=closure)

    assert loss == torch.tensor(error, device=rank)
    assert m.weight == torch.tensor([[1.1]], device=rank)
    assert m.bias == torch.tensor([2.1], device=rank)

337
338
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
339
340
341

@skip_if_no_cuda
def test_step_with_closure():
342
    world_size = min(2, torch.cuda.device_count())
343
344
345
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step_with_closure, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
346
347


348
349
def run_test_sharding(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
350
351
352
    params = []
    for size in [5, 4, 2, 6, 4, 3]:
        params.append(torch.rand(size, 1))
353
354
355
356
357

    # Make sure that the params are trainable, enforces size-based partitioning
    for p in params:
        p.requires_grad = True

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
358
359
360
    o = optim.OSS(params, lr=0.1)
    assert sum([x.numel() for x in o.optim.param_groups[0]["params"]]) == 8

361
362
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
363
364
365

def test_sharding():
    world_size = 3
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
366
    if not torch.cuda.is_available() or torch.cuda.device_count() < world_size:
367
        pytest.skip("Not enough GPUs for NCCL-based test")
368
369
370
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_sharding, args=(world_size, temp_file_name), nprocs=world_size, join=True)
371
372


373
374
def run_test_collect_shards(rank, world_size, reference_rank, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
375
376
377
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE

    # Run a dummy step so that the optimizer state dict exists
378
    batch, input_width, hidden, target_width = 3, 3, 3, 5
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

    # With SGD, Momentum is required to get a state to shard
    optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99)

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

    # Update the optimizer state on the reference rank
    optimizer.consolidate_state_dict(recipient_rank=reference_rank)

    # Fetch the state on the reference rank
    # - check that it has the correct size
    # - load it again
    if rank == reference_rank:
        optimizer_state_dict = optimizer.state_dict()
408
        assert len(optimizer_state_dict["state"]) == world_size
409
410
411
    else:
        optimizer_state_dict = {}

412
    optim_state = [optimizer_state_dict]
413
414
415
416
417
418
419
    if _torch_broadcast_object:
        dist.broadcast_object_list(optim_state, src=reference_rank, group=dist.group.WORLD)
        optimizer_state_dict = optim_state[0]
    else:
        optimizer_state_dict = optim.utils.broadcast_object(
            optimizer_state_dict, src_rank=reference_rank, group=dist.group.WORLD, dist_device=device
        )
420
421

    # Load the optimizer state dict
422
    optimizer.load_state_dict(optimizer_state_dict)
423
    dist.destroy_process_group()
424
425
426
427


def test_collect_shards():
    world_size = 3
428
429
    temp_file_name = tempfile.mkstemp()[1]

430
431
    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
432
433
434
    reference_rank = 0

    mp.spawn(
435
        run_test_collect_shards, args=(world_size, reference_rank, temp_file_name), nprocs=world_size, join=True,
436
    )
437
438


439
def run_test_multiple_groups(rank, world_size, tempfile_name):
440
    # Only work with the even ranks, to check that the global_rank indexing is properly used
441
    dist_init(rank=rank, world_size=world_size, tempfile_name=tempfile_name, backend="gloo")
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
    sub_group_ranks = [0, 2, 4]
    process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend="gloo")

    # Make sure that all the ranks get different training data
    # So that the sync check in between their models is meaningful
    torch.manual_seed(rank)
    np.random.seed(rank)

    # Standard deep learning setup
    device = "cpu"
    epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
    loss_fn = torch.nn.L1Loss().to(device)

    def check(optimizer):
        # Just run a couple of epochs, check that the model is properly updated
        for _ in range(epochs):
            target = torch.rand((batch, target_width), device=device)
            inputs = torch.rand((batch, input_width), device=device)

            def closure():
                optimizer.zero_grad()
                output = model(inputs)
                loss = loss_fn(output, target)
                loss /= world_size
                loss.backward()
                dist.all_reduce(loss, group=process_group)  # Not strictly needed for the test below

                return loss

            _ = optimizer.step(closure=closure)

            # Check that all the params are the same on all ranks
            for pg in optimizer.param_groups:
                for p in pg["params"]:
                    receptacle = [p.clone() for _ in sub_group_ranks] if rank == 0 else []
                    dist.gather(p, receptacle, dst=0, group=process_group)
                    if rank == 0:
                        for sync_p in receptacle[1:]:
480
481
482
483
484
                            assert torch.all(
                                torch.eq(receptacle[0], sync_p)
                            ), "Models differ in between ranks {} - {}".format(
                                torch.norm(receptacle[0]), torch.norm(sync_p)
                            )
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

    if rank in sub_group_ranks:
        # Model fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(
            model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=2 ** 20
        )
        check(optimizer)

        # Model not-fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=0)
        check(optimizer)

507
508
    dist.destroy_process_group(process_group)

509
510
511

def test_multiple_groups():
    world_size = 6
512
    temp_file_name = tempfile.mkstemp()[1]
513
514

    mp.spawn(
515
        run_test_multiple_groups, args=(world_size, temp_file_name), nprocs=world_size, join=True,
516
    )
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591


def run_gradient_clipping(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
    device = torch.device(rank)
    torch.manual_seed(rank)  # make sure that the different rank get different data

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)
    NORMS = [1.0, 2.0, 1, 2, inf]
    CLIP_NORM = 0.3

    def check(norm):
        model_oss = torch.nn.Sequential(
            torch.nn.Linear(input_width, hidden),
            torch.nn.Linear(hidden, hidden),
            torch.nn.Linear(hidden, target_width),
        ).to(device)
        model = copy.deepcopy(model_oss)

        # For this test the gradients are (all) reduced in the same way in between the torch reference and fairscale.
        # Normally OSS would use ShardedDDP and only reduce to the proper rank, but this does not change the
        # gradient norm computation from OSS and adds a dependency.
        # to keep the comparison apples-to-apples DDP is used in both cases
        model_oss = DDP(module=model_oss, device_ids=[rank],)
        sharded_optimizer = optim.OSS(model_oss.parameters(), lr=0.1, momentum=0.99)

        model = DDP(model, device_ids=[rank],)

        loss_fn = torch.nn.L1Loss()
        loss_fn.to(device)

        model.zero_grad()
        model_oss.zero_grad()

        outputs = model(inputs)
        outputs_oss = model_oss(inputs)

        loss = loss_fn(outputs, target)
        loss.backward()

        loss_oss = loss_fn(outputs_oss, target)
        loss_oss.backward()

        # Check the equivalence with the non-sharded optim
        oss_total_norm = sharded_optimizer.clip_grad_norm(CLIP_NORM, norm_type=norm)
        total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_NORM, norm_type=norm)
        assert torch.allclose(oss_total_norm, total_norm), "torch and fairscale should return the same grad norm"

        # Check that the params have indeed been clipped
        for params in sharded_optimizer.per_device_params.values():
            for param in filter(lambda x: x.grad is not None, params[rank]):
                assert torch.norm(param.grad, p=norm) < CLIP_NORM, f"param grad norm above clip : {param.grad}"

    for norm in NORMS:
        print(f"Checking norm {norm}")
        check(norm)

    dist.destroy_process_group()


@skip_if_no_cuda
def test_gradient_clipping():
    world_size = 3
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
    reference_rank = 0

    mp.spawn(
        run_gradient_clipping, args=(world_size, temp_file_name), nprocs=world_size, join=True,
    )
592
593
594
595
596
597
598
599
600
601
602
603


def run_state_dict_distributed(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
    device = torch.device(rank)
    torch.manual_seed(rank)  # make sure that the different rank get different data

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

604
605
606
    model_oss1 = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, hidden),).to(device)
    head_oss1 = torch.nn.Linear(hidden, target_width).to(device)

607
    model_oss2 = copy.deepcopy(model_oss1)
608
    head_oss2 = copy.deepcopy(head_oss1)
609
610
611
612
613
614
615

    # For this test the gradients are (all) reduced in the same way in between the torch reference and fairscale.
    # Normally OSS would use ShardedDDP and only reduce to the proper rank, but this does not change the
    # gradient norm computation from OSS and adds a dependency.
    # to keep the comparison apples-to-apples DDP is used in both cases
    model_oss1 = DDP(module=model_oss1, device_ids=[rank],)
    sharded_optimizer1 = optim.OSS(model_oss1.parameters(), lr=0.1, momentum=0.99)
616
617
    sharded_optimizer1.add_param_group({"params": head_oss1.parameters()})

618
619
    model_oss2 = DDP(module=model_oss2, device_ids=[rank],)
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=0.1, momentum=0.99)
620
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
621

622
    def run_grad_step(device, model, head, optimizer):
623
624
625
626
627
        loss_fn = torch.nn.L1Loss()
        loss_fn.to(device)

        model.zero_grad()

628
        outputs = head(model(inputs))
629
630
631
632
633
634
635

        loss = loss_fn(outputs, target)
        loss.backward()

        optimizer.step()
        optimizer.zero_grad()

636
637
638
    # save and reload without taking any steps
    sharded_optimizer2.consolidate_state_dict()
    state_dict2 = sharded_optimizer2.state_dict()
639

640
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=0.1, momentum=0.99)
641
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
642
643
644
645
    sharded_optimizer2.load_state_dict(state_dict2)

    # now take a step and check that parameters are equal
    # take a step
646
647
    run_grad_step(device, model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(device, model_oss2, head_oss2, sharded_optimizer2)
648
649
650
651
652

    # check that model parameters are equal
    for param1, param2 in zip(model_oss1.parameters(), model_oss2.parameters()):
        assert torch.allclose(param1, param2), "parameters of the two identical models have diverged (before any steps)"

653
    # take a step
654
655
    run_grad_step(device, model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(device, model_oss2, head_oss2, sharded_optimizer2)
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

    # check that model parameters are equal
    for param1, param2 in zip(model_oss1.parameters(), model_oss2.parameters()):
        assert torch.allclose(param1, param2), "parameters of the two identical models have diverged (before saving)"

    # save the state dict for one model only
    sharded_optimizer2.consolidate_state_dict()
    state_dict2 = sharded_optimizer2.state_dict()

    # Check that the pulled state and the .param_groups attribute are in sync
    for replica in range(len(state_dict2["param_groups"])):
        for k in state_dict2["param_groups"][replica].keys():
            if k != "params":
                assert state_dict2["param_groups"][replica][k] == sharded_optimizer2.param_groups[0][k]

    # take a step
672
673
    run_grad_step(device, model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(device, model_oss2, head_oss2, sharded_optimizer2)
674
675
676
677
678
679
680
681
682
683
684
685
686

    # check that saving did not cause a change in the parameters
    for param1, param2 in zip(model_oss1.parameters(), model_oss2.parameters()):
        assert torch.allclose(
            param1, param2
        ), "parameters of the two identical models have diverged (after consolidating)"

    # save again
    sharded_optimizer2.consolidate_state_dict()
    state_dict2 = sharded_optimizer2.state_dict()

    # reload the state_dict
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=0.1, momentum=0.99)
687
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
688
689
690
    sharded_optimizer2.load_state_dict(state_dict2)

    # take a step
691
692
    run_grad_step(device, model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(device, model_oss2, head_oss2, sharded_optimizer2)
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711

    # check that reloading a saved state dict does not change the parameters
    for param1, param2 in zip(model_oss1.parameters(), model_oss2.parameters()):
        assert torch.allclose(param1, param2), "parameters of the two identical models have diverged (after reloading)"

    dist.destroy_process_group()


@skip_if_no_cuda
def test_state_dict_distributed():
    world_size = 8
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())

    mp.spawn(
        run_state_dict_distributed, args=(world_size, temp_file_name), nprocs=world_size, join=True,
    )
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788


def run_ddp_parity(rank, world_size, backend, temp_file_name):
    url = "file://" + temp_file_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)

    device = torch.device("cuda")
    torch.cuda.set_device(rank)
    torch.manual_seed(rank)
    np.random.seed(rank)

    def check_optimizer_equivalence(optimizer: Type[torch.optim.Optimizer]):
        # Any model works. Add one different buffer per rank
        model = torch.nn.Sequential(torch.nn.Linear(2, 3), torch.nn.Linear(3, 3), torch.nn.Linear(3, 3),)
        model.register_buffer("test_buffer", torch.ones((1)) * rank)
        model.to(device)

        sharded_optimizer = optim.OSS(params=model.parameters(), optim=optimizer, lr=1e-3)
        sharded_ddp_model = DDP(module=model, device_ids=[rank], broadcast_buffers=True)

        ddp_model_single = copy.deepcopy(model)
        ddp_optimizer = optimizer(ddp_model_single.parameters(), lr=1e-3)
        ddp_model = DDP(ddp_model_single, device_ids=[rank], broadcast_buffers=True)

        def check_same_model_params():
            for pg, ddp_pg in zip(sharded_optimizer.param_groups, ddp_optimizer.param_groups):
                for p, ddp_p in zip(pg["params"], ddp_pg["params"]):
                    assert torch.allclose(
                        p, ddp_p, atol=1e-3
                    ), f"Model parameters differ in between Pytorch optim and OSS \n{p} {ddp_p}\nworld size {world_size}"

            for b, ddp_b in zip(sharded_ddp_model.buffers(), ddp_model.buffers()):
                assert torch.allclose(
                    b, ddp_b
                ), f"Model buffers differ in between Pytorch optim and OSS\nworld size {world_size}"

        # The model should be synchronized in between the ranks at construction time, check that
        check_same_model_params()

        # The models should stay the same in between the ranks
        for i in range(20):
            input_tensor = torch.rand((64, 2)).to(device)

            def closure_ddp(input_tensor=input_tensor):
                ddp_optimizer.zero_grad()
                ddp_loss = ddp_model(input_tensor).abs().sum()
                ddp_loss.backward()
                return ddp_loss

            def closure_sharded(input_tensor=input_tensor):
                sharded_optimizer.zero_grad()
                sharded_loss = sharded_ddp_model(input_tensor).abs().sum()
                sharded_loss.backward()
                return sharded_loss

            loss_ddp = cast(torch.Tensor, ddp_optimizer.step(closure=closure_ddp))
            loss_sharded_optim = cast(torch.Tensor, sharded_optimizer.step(closure=closure_sharded))

            assert torch.allclose(
                loss_ddp, loss_sharded_optim
            ), f"Losses differ in between Pytorch optim and OSS\nworld size {world_size}"

            check_same_model_params()

    for opt in [torch.optim.SGD, torch.optim.Adam]:
        check_optimizer_equivalence(opt)

    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
def test_ddp_parity():
    temp_file_name = tempfile.mkstemp()[1]
    world_size = torch.cuda.device_count()
    backend = dist.Backend.NCCL
    mp.spawn(run_ddp_parity, args=(world_size, backend, temp_file_name), nprocs=world_size, join=True)