dnn.cpp 43.1 KB
Newer Older
Davis King's avatar
Davis King committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.


#include <sstream>
#include <string>
#include <cstdlib>
#include <ctime>
#include <vector>
#include "../dnn.h"

#include "tester.h"


namespace  
{

    using namespace test;
    using namespace dlib;
    using namespace std;

    logger dlog("test.dnn");

// ----------------------------------------------------------------------------------------

    template <typename T>
    float compare_gradients (
        const tensor& t,
        T grad
    )
    {
        float max_error = 0;
        auto p = t.host();
        for (size_t i = 0; i < t.size(); ++i)
        {
            max_error = std::max(max_error, std::abs(p[i]-grad(i)));
        }
        return max_error;
    }

Davis King's avatar
Davis King committed
41
42
43
44
// ----------------------------------------------------------------------------------------

    void test_tanh()
    {
45
        using namespace dlib::tt;
Davis King's avatar
Davis King committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        print_spinner();
        resizable_tensor src(5,5), dest(5,5), gradient_input(5,5);
        src = matrix_cast<float>(gaussian_randm(5,5, 0));
        dest = matrix_cast<float>(gaussian_randm(5,5, 1));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5, 2));



        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
                tanh(dest, src);
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };

        resizable_tensor src_grad;
        src_grad.copy_size(src);
        src_grad = 0;

        tanh(dest, src);
        tanh_gradient(src_grad, dest, gradient_input);

        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);
    }

79
80
    void test_sigmoid()
    {
81
        using namespace dlib::tt;
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        print_spinner();
        resizable_tensor src(5,5), dest(5,5), gradient_input(5,5);
        src = matrix_cast<float>(gaussian_randm(5,5, 0));
        dest = matrix_cast<float>(gaussian_randm(5,5, 1));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5, 2));



        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
                sigmoid(dest, src);
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };

        resizable_tensor src_grad;
        src_grad.copy_size(src);
        src_grad = 0;

        sigmoid(dest, src);
        sigmoid_gradient(src_grad, dest, gradient_input);

        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);
    }

115
116
    void test_softmax()
    {
117
        using namespace dlib::tt;
118
        print_spinner();
Davis King's avatar
Davis King committed
119
120
121
122
123
124
        const long nr = 3;
        const long nc = 3;
        resizable_tensor src(5,5,nr,nr), dest(5,5,nr,nc), gradient_input(5,5,nr,nc);
        src = matrix_cast<float>(gaussian_randm(5,5*nr*nc, 0));
        dest = matrix_cast<float>(gaussian_randm(5,5*nr*nc, 1));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5*nr*nc, 2));
125
126
127
128
129
130
131



        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
Davis King's avatar
Davis King committed
132
                tt::softmax(dest, src);
133
134
135
136
137
138
139
140
141
142
143
144
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };

        resizable_tensor src_grad;
        src_grad.copy_size(src);
        src_grad = 0;

Davis King's avatar
Davis King committed
145
        tt::softmax(dest, src);
146
147
148
149
150
151
152
        softmax_gradient(src_grad, dest, gradient_input);

        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);
    }

Davis King's avatar
Davis King committed
153
154
    void test_batch_normalize()
    {
155
        using namespace dlib::tt;
156
        print_spinner();
157
        resizable_tensor src(5,5), gamma(1,5), beta(1,5), dest, dest2, means, vars, gradient_input(5,5);
Davis King's avatar
Davis King committed
158
159
160
161
162
163
164
165
        src = matrix_cast<float>(gaussian_randm(5,5, 0));
        gamma = matrix_cast<float>(gaussian_randm(1,5, 1));
        beta = matrix_cast<float>(gaussian_randm(1,5, 2));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5, 3));

        gamma = 1;
        beta = 0;

166
167
168
        resizable_tensor running_means;
        resizable_tensor running_invstds;
        batch_normalize(dest, means, vars, 1, running_means, running_invstds, src, gamma, beta);
169
170
171
        const double scale = (src.num_samples())/(src.num_samples()-1.0);
        // Turn back into biased variance estimate because that's how batch_normalize() works, so if we want to match it this is necessary.
        running_invstds = mat(running_invstds)/scale; 
172
        batch_normalize_inference(dest2, src, gamma, beta, running_means, running_invstds);
173
        DLIB_TEST_MSG(max(abs(mat(dest2)-mat(dest))) < 1e-5, max(abs(mat(dest2)-mat(dest))));
Davis King's avatar
Davis King committed
174
175
176
177
178
179


        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
180
                batch_normalize(dest, means, vars, 1, running_means, running_invstds, src, gamma, beta);
Davis King's avatar
Davis King committed
181
182
183
184
185
186
187
188
189
190
191
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };
        auto grad_gamma = [&](long idx) {
            auto f = [&](float eps) {
                const float old = gamma.host()[idx];
                gamma.host()[idx] += eps;
192
                batch_normalize(dest, means, vars, 1, running_means, running_invstds, src, gamma, beta);
Davis King's avatar
Davis King committed
193
194
195
196
197
198
199
200
201
202
203
                float result = dot(gradient_input, dest);
                gamma.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };
        auto grad_beta = [&](long idx) {
            auto f = [&](float eps) {
                const float old = beta.host()[idx];
                beta.host()[idx] += eps;
204
                batch_normalize(dest, means, vars, 1, running_means, running_invstds, src, gamma, beta);
Davis King's avatar
Davis King committed
205
206
207
208
209
210
211
212
213
214
215
216
217
                float result = dot(gradient_input, dest);
                beta.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };

        resizable_tensor src_grad, gamma_grad, beta_grad;
        src_grad.copy_size(src);
        gamma_grad.copy_size(gamma);
        beta_grad.copy_size(beta);
        src_grad = 0;
Davis King's avatar
Davis King committed
218
219
        gamma_grad = 8;
        beta_grad = 8;
Davis King's avatar
Davis King committed
220

221
        batch_normalize_gradient(gradient_input, means, vars, src, gamma, src_grad, gamma_grad, beta_grad);
Davis King's avatar
Davis King committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

        grad_error = compare_gradients(gamma_grad, grad_gamma);
        dlog << LINFO << "gamma error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

        grad_error = compare_gradients(beta_grad, grad_beta);
        dlog << LINFO << "beta error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);
    }

    void test_batch_normalize_conv()
    {
238
        using namespace dlib::tt;
239
        print_spinner();
240
        resizable_tensor src(5,5,4,4), gamma(1,5), beta(1,5), dest, dest2, means, vars, gradient_input(5,5,4,4);
Davis King's avatar
Davis King committed
241
242
243
244
245
246
247
248
        src = matrix_cast<float>(gaussian_randm(5,5*4*4, 0));
        gamma = matrix_cast<float>(gaussian_randm(1,5, 1));
        beta = matrix_cast<float>(gaussian_randm(1,5, 2));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5*4*4, 3));

        gamma = 1;
        beta = 0;

249
250
251
        resizable_tensor running_means;
        resizable_tensor running_invstds;
        batch_normalize_conv(dest, means, vars, 1, running_means, running_invstds, src, gamma, beta);
252
253
254
255
        const double scale = (src.num_samples()*src.nr()*src.nc())/(src.num_samples()*src.nr()*src.nc()-1.0);
        // Turn back into biased variance estimate because that's how
        // batch_normalize_conv() works, so if we want to match it this is necessary.
        running_invstds = mat(running_invstds)/scale; 
256
257
        batch_normalize_conv_inference(dest2, src, gamma, beta, running_means, running_invstds);
        DLIB_TEST(max(abs(mat(dest2)-mat(dest))) < 1e-5);
Davis King's avatar
Davis King committed
258
259
260
261
262
263


        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
264
                batch_normalize_conv(dest, means, vars, 1, running_means, running_invstds, src, gamma, beta);
Davis King's avatar
Davis King committed
265
266
267
268
269
270
271
272
273
274
275
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };
        auto grad_gamma = [&](long idx) {
            auto f = [&](float eps) {
                const float old = gamma.host()[idx];
                gamma.host()[idx] += eps;
276
                batch_normalize_conv(dest, means, vars, 1, running_means, running_invstds, src, gamma, beta);
Davis King's avatar
Davis King committed
277
278
279
280
281
282
283
284
285
286
287
                float result = dot(gradient_input, dest);
                gamma.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };
        auto grad_beta = [&](long idx) {
            auto f = [&](float eps) {
                const float old = beta.host()[idx];
                beta.host()[idx] += eps;
288
                batch_normalize_conv(dest, means, vars, 1, running_means, running_invstds, src, gamma, beta);
Davis King's avatar
Davis King committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
                float result = dot(gradient_input, dest);
                beta.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };


        resizable_tensor src_grad, gamma_grad, beta_grad;
        src_grad.copy_size(src);
        gamma_grad.copy_size(gamma);
        beta_grad.copy_size(beta);
        src_grad = 0;
Davis King's avatar
Davis King committed
303
304
        gamma_grad = 9;
        beta_grad = 9;
Davis King's avatar
Davis King committed
305

306
        batch_normalize_conv_gradient(gradient_input, means, vars, src, gamma, src_grad, gamma_grad, beta_grad);
Davis King's avatar
Davis King committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322


        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

        grad_error = compare_gradients(gamma_grad, grad_gamma);
        dlog << LINFO << "gamma error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

        grad_error = compare_gradients(beta_grad, grad_beta);
        dlog << LINFO << "beta error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

    }

323
324
325
326
// ----------------------------------------------------------------------------------------

    void test_basic_tensor_ops()
    {
327
        using namespace dlib::tt;
328
329
330
        print_spinner();
        resizable_tensor dest, src(3,4), A(1,4), B(1,4);
        src = 2;
331
        dest.copy_size(src);
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
        affine_transform(dest, src, 2, 3);
        dlog << LINFO << mat(dest);
        matrix<float> truth1(3,4), truth2(3,4);

        truth1 = 7;
        truth2 = 7, 10,  7,  7,
        7, 10,  7,  7,
        7, 10,  7,  7;
        DLIB_TEST(max(abs(truth1-mat(dest))) < 1e-5);

        A = 2;
        B = 3;
        A.host()[1] = 3;
        B.host()[1] = 4;
        dest = 0;
        affine_transform(dest, src, A, B);
        dlog << LINFO << mat(dest);
        DLIB_TEST(max(abs(truth2-mat(dest))) < 1e-5);

        A.set_size(3,4);
        B.set_size(3,4);
        A = matrix_cast<float>(gaussian_randm(3,4, 1));
        B = matrix_cast<float>(gaussian_randm(3,4, 2));
        affine_transform(dest, src, A, B);
        dlog << LINFO << mat(dest);
        matrix<float> truth3 = pointwise_multiply(mat(src), mat(A)) + mat(B);
        DLIB_TEST(max(abs(truth3-mat(dest))) < 1e-5);

        matrix<float> truth4 = pointwise_multiply(mat(A), mat(B));
361
        tt::multiply(A, A, B);
362
363
364
365
366
367
        DLIB_TEST(max(abs(truth4-mat(A))) < 1e-5);

        matrix<float> truth5 = mat(B) > 0.1;
        dlog << LINFO << truth5;
        threshold(B, 0.1);
        DLIB_TEST(max(abs(truth5-mat(B))) < 1e-5);
Davis King's avatar
Davis King committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

        int cnt = 0;
        for(auto& x : A)
            x = cnt++;

        truth1.set_size(2,2);
        truth2.set_size(2,2);
        truth3.set_size(2,2);
        truth1 = 0,1,2,3;
        truth2 = 4,5,6,7;
        truth3 = 8,9,10,11;

        alias_tensor at(2,2);
        auto A0 = at(A,0);
        auto A4 = at(A,4);
        auto A8 = at(A,8);
        DLIB_TEST(mat(A0) == truth1);
        DLIB_TEST(mat(at(A,4)) == truth2);
        DLIB_TEST(mat(A8) == truth3);

        A4 += uniform_matrix<float>(2,2,2);
        truth2 += 2;
        DLIB_TEST(mat(A4) == truth2);
        truth1 = trans(reshape_to_column_vector(truth1));
        truth2 = trans(reshape_to_column_vector(truth2));
        truth3 = trans(reshape_to_column_vector(truth3));

        DLIB_TEST(mat(A) == join_cols(truth1,join_cols(truth2,truth3)));

        affine_transform(A,A,1,2);
        truth1 += 2;
        truth2 += 2;
        truth3 += 2;
        DLIB_TEST(mat(at(A,4)) == reshape(truth2,2,2));
        DLIB_TEST(mat(A) == join_cols(truth1,join_cols(truth2,truth3)));
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

        {
            resizable_tensor dest(3,4);
            resizable_tensor A, B;
            A = dest;
            B = dest;

            tensor_rand rnd;
            rnd.fill_uniform(dest);
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);

            dest.set_size(1,4);

            tt::multiply(dest, A, B);
            DLIB_TEST(max(abs(mat(dest)-sum_rows(pointwise_multiply(mat(A),mat(B))))) < 1e-6); 

            A.set_size(1,4);
            rnd.fill_uniform(A);
            matrix<float> AA = join_cols(mat(A),mat(A)); AA = join_cols(mat(A),AA);

            tt::multiply(dest, A, B);
            DLIB_TEST(max(abs(mat(dest)-sum_rows(pointwise_multiply(AA,mat(B))))) < 1e-6); 

            tt::multiply(dest, B, A);
            DLIB_TEST(max(abs(mat(dest)-sum_rows(pointwise_multiply(AA,mat(B))))) < 1e-6); 

            dest.set_size(3,4);
            tt::multiply(dest, B, A);
            DLIB_TEST(max(abs(mat(dest)-pointwise_multiply(AA,mat(B)))) < 1e-6); 

            tt::multiply(dest, A, B);
            DLIB_TEST(max(abs(mat(dest)-pointwise_multiply(AA,mat(B)))) < 1e-6); 
        }
Davis King's avatar
Davis King committed
437
438
439

        {
            resizable_tensor A, B;
Davis King's avatar
Davis King committed
440
441
            A.set_size(2,3,4,5);
            B.set_size(2,3,4,5);
Davis King's avatar
Davis King committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

            tensor_rand rnd;
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);

            matrix<float> truth;

            truth = 2*mat(A) + 3*mat(B);
            tt::add(2, A, 3, B);
            DLIB_TEST(max(abs(mat(A)-truth )) < 1e-6);


            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
            truth = 0*mat(A) + 3*mat(B);
            tt::add(0, A, 3, B);
            DLIB_TEST(max(abs(mat(A)-truth )) < 1e-6);

            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
            truth = 1*mat(A) + 0*mat(B);
            tt::add(1, A, 0, B);
            DLIB_TEST(max(abs(mat(A)-truth )) < 1e-6);


            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
            truth = 0*mat(A) + 0*mat(B);
            tt::add(0, A, 0, B);
            DLIB_TEST(max(abs(mat(A)-truth )) < 1e-6);


Davis King's avatar
Davis King committed
474
            B.set_size(1,3,4,5);
Davis King's avatar
Davis King committed
475
476
477
478
479
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
            truth = 2*mat(A) + 3*join_cols(mat(B), mat(B));
            tt::add(2, A, 3, B);
            DLIB_TEST(max(abs(mat(A)-truth )) < 1e-6);
Davis King's avatar
Davis King committed
480
            DLIB_TEST(A.num_samples()==2);
Davis King's avatar
Davis King committed
481

Davis King's avatar
Davis King committed
482
            B.set_size(1,1,4,5);
Davis King's avatar
Davis King committed
483
484
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
Davis King's avatar
Davis King committed
485
486
            matrix<float> temp = join_rows(mat(B), join_rows(mat(B),mat(B)));
            truth = 2*mat(A) + 3*join_cols(temp,temp);
Davis King's avatar
Davis King committed
487
            tt::add(2, A, 3, B);
Davis King's avatar
Davis King committed
488
489
490
491
492
493
494
495
496
            DLIB_TEST_MSG(max(abs(mat(A)-truth )) < 1e-6, max(abs(mat(A)-truth )));

            B.set_size(1,3,1,1);
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
            resizable_tensor AA(A), BB(B);
            tt::add(2, A, 3, B);
            cpu::add(2, AA, 3, BB);
            DLIB_TEST_MSG(max(abs(mat(A)-mat(AA) )) < 1e-6, max(abs(mat(A)-mat(AA) )));
Davis King's avatar
Davis King committed
497
        }
498
499
    }

Davis King's avatar
Davis King committed
500
501
// ----------------------------------------------------------------------------------------

502
#ifdef DLIB_USE_CUDA
503

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
    void test_conv()
    {
        cuda::tensor_conv conv1;
        cpu::tensor_conv conv2;

        dlib::rand prnd;
        for (int iter = 0; iter < 400; ++iter)
        {
            print_spinner();

            resizable_tensor data(prnd.get_random_32bit_number()%5+1,
                prnd.get_random_32bit_number()%5+1,
                prnd.get_random_32bit_number()%30+1,
                prnd.get_random_32bit_number()%30+1
            );
            resizable_tensor filters(
                prnd.get_random_32bit_number()%5+1,
                data.k(),
                prnd.get_random_32bit_number()%6+1,
                prnd.get_random_32bit_number()%6+1 
            );

            tt::tensor_rand rnd;
            rnd.fill_uniform(data);
            rnd.fill_uniform(filters);


            resizable_tensor output1, output2;


            const int stride_y = prnd.get_random_32bit_number()%5+1;
            const int stride_x = prnd.get_random_32bit_number()%5+1;
            conv1(output1, data, filters, stride_y,stride_x);

            conv2(output2, data, filters, stride_y,stride_x);

            dlog << LINFO << "forward error: "<< max(abs(mat(output1)-mat(output2)));
            DLIB_TEST(max(abs(mat(output1)-mat(output2))) < 1e-3);



            resizable_tensor gi, data_gradient1, data_gradient2;
            gi.copy_size(output1);
            rnd.fill_uniform(gi);

            data_gradient1.copy_size(data);
            data_gradient2.copy_size(data);
            data_gradient1 = 1;
            data_gradient2 = 1;

            conv1.get_gradient_for_data(gi, filters, data_gradient1);
            conv2.get_gradient_for_data(gi, filters, data_gradient2);

            dlog << LINFO << "data gradient error: "<< max(abs(mat(data_gradient1)-mat(data_gradient2)));
            DLIB_TEST(max(abs(mat(data_gradient1)-mat(data_gradient2))) < 1e-3);


            resizable_tensor filter_gradient1, filter_gradient2;
            gi.copy_size(output1);
            rnd.fill_uniform(gi);

            filter_gradient1.copy_size(filters);
            filter_gradient2.copy_size(filters);
            filter_gradient1 = 1;
            filter_gradient2 = 1;

            conv1.get_gradient_for_filters(gi, data, filter_gradient1);
            conv2.get_gradient_for_filters(gi, data, filter_gradient2);

            dlog << LINFO << "filter gradient error: "<< max(abs(mat(filter_gradient1)-mat(filter_gradient2)));
            DLIB_TEST(max(abs(mat(filter_gradient1)-mat(filter_gradient2))) < 1e-3);
        }
    }

Davis King's avatar
Davis King committed
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
    void compare_adam()
    {
        float t = 2;
        tt::tensor_rand rnd;
        resizable_tensor s, m, v, params, params_grad;
        s.set_size(89,90,60,73);
        m.copy_size(s);
        v.copy_size(s);
        params.copy_size(s);
        params_grad.copy_size(s);

        rnd.fill_uniform(s);
        rnd.fill_uniform(m);
        rnd.fill_uniform(v);
        rnd.fill_uniform(params);
        rnd.fill_uniform(params_grad);

        resizable_tensor mm(m), vv(v);
        cpu::compute_adam_update(s, mm, vv, t, 0.01, 0.001, 0.9, 0.99, params, params_grad);
        matrix<float> s1 = mat(s);
        
        rnd.fill_uniform(s);
        cuda::compute_adam_update(s, m, v, t, 0.01, 0.001, 0.9, 0.99, params, params_grad);
        matrix<float> s2 = mat(s);

        DLIB_TEST_MSG(max(abs(s1-s2)) < 1e-6, max(abs(s1-s2)));
        DLIB_TEST_MSG(max(abs(mat(m)-mat(mm))) < 1e-6, max(abs(mat(m)-mat(mm))));
        DLIB_TEST_MSG(max(abs(mat(v)-mat(vv))) < 1e-6, max(abs(mat(v)-mat(vv))));
    }

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
    void test_add()
    {
        print_spinner();
        dlib::rand rnd;
        tt::tensor_rand trnd;
        for (int iter = 0; iter < 300; ++iter)
        {
            resizable_tensor dest1(rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1);
            resizable_tensor dest2;
            dest2.copy_size(dest1);
            resizable_tensor src1(rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1);
            resizable_tensor src2(rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1);

            trnd.fill_uniform(dest1);
            trnd.fill_uniform(dest2);
            trnd.fill_uniform(src1);
            trnd.fill_uniform(src2);
            cpu::add(dest1, src1, src2);
            cuda::add(dest2, src1, src2);

            DLIB_TEST(max(abs(mat(dest1) - mat(dest2))) < 1e-5);
        }

        // make sure we have a test for the case where all tensors have the same
        // dimensions.
        resizable_tensor dest1(3,4,5,6);
        resizable_tensor dest2;
        resizable_tensor src1;
        resizable_tensor src2;
        dest2.copy_size(dest1);
        src1.copy_size(dest1);
        src2.copy_size(dest1);

        trnd.fill_uniform(dest1);
        trnd.fill_uniform(dest2);
        trnd.fill_uniform(src1);
        trnd.fill_uniform(src2);

        cpu::add(dest1, src1, src2);
        cuda::add(dest2, src1, src2);

        DLIB_TEST(max(abs(mat(dest1) - mat(dest2))) < 1e-5);
    }

Davis King's avatar
Davis King committed
661
662
    void test_more_ops(const long nr, const long nc)
    {
663
        using namespace dlib::tt;
Davis King's avatar
Davis King committed
664
665
666
667
668
669
670
671
672
673
674
675
676
        print_spinner();
        // We are going to make sure that the CPU implementation of these things matches
        // the CUDA implementation.

        tensor_rand rnd;

        resizable_tensor dest(nr,nc), src(nr,nc), dest2, src2;
        resizable_tensor srcb(nr,nc), srcc(nr,nc), srcb2, srcc2;


        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        dest2 = dest; src2 = src;
677
678
        cuda::multiply(dest, dest, src);
        cpu::multiply(dest2, dest2, src2);
Davis King's avatar
Davis King committed
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
        DLIB_TEST(equal(mat(dest),mat(dest2)));


        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        dest2 = dest; src2 = src;
        cuda::affine_transform(dest, src, 2, 3);
        cpu::affine_transform(dest2, src2, 2, 3);
        DLIB_TEST(equal(mat(dest),mat(dest2)));

        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        rnd.fill_uniform(srcb);
        dest2 = dest; src2 = src; srcb2 = srcb;
        cuda::affine_transform(dest, src, srcb, 2, 3, 4);
        cpu::affine_transform(dest2, src2, srcb2, 2, 3, 4);
        DLIB_TEST(equal(mat(dest),mat(dest2)));

        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        rnd.fill_uniform(srcb);
        rnd.fill_uniform(srcc);
        dest2 = dest; src2 = src; srcb2 = srcb; srcc2 = srcc;
        cuda::affine_transform(dest, src, srcb, srcc, 2, 3, 4, 5);
        cpu::affine_transform(dest2, src2, srcb2, srcc2, 2, 3, 4, 5);
        DLIB_TEST(equal(mat(dest),mat(dest2)));


        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        rnd.fill_uniform(srcb);
        rnd.fill_uniform(srcc);
        dest2 = dest; src2 = src; srcb2 = srcb; srcc2 = srcc;
        cuda::affine_transform(dest, src, srcb, srcc);
        cpu::affine_transform(dest2, src2, srcb2, srcc2);
        DLIB_TEST(equal(mat(dest),mat(dest2)));
        // now exercise code path where the A/B tensors have num_samples()==1
        srcb.set_size(1,nc);
        srcc.set_size(1,nc);
        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        rnd.fill_uniform(srcb);
        rnd.fill_uniform(srcc);
        dest2 = dest; src2 = src; srcb2 = srcb; srcc2 = srcc;
        cuda::affine_transform(dest, src, srcb, srcc);
        cpu::affine_transform(dest2, src2, srcb2, srcc2);
        DLIB_TEST(equal(mat(dest),mat(dest2)));


        rnd.fill_uniform(src);
        src2 = src;
        cuda::threshold(src, 0.5);
        cpu::threshold(src2, 0.5);
        DLIB_TEST(equal(mat(src),mat(src2)));

734
735
736
737
738
739
740
741
742
743
744
745
746
747
        {
            resizable_tensor dest(3,4);
            resizable_tensor A, B;
            A = dest;
            B = dest;

            tensor_rand rnd;
            rnd.fill_uniform(dest);
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);

            dest.set_size(1,4);

            cuda::multiply(dest, A, B);
748
            DLIB_TEST_MSG(max(abs(mat(dest)-sum_rows(pointwise_multiply(mat(A),mat(B))))) < 1e-6, max(abs(mat(dest)-sum_rows(pointwise_multiply(mat(A),mat(B)))))); 
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766

            A.set_size(1,4);
            rnd.fill_uniform(A);
            matrix<float> AA = join_cols(mat(A),mat(A)); AA = join_cols(mat(A),AA);

            cuda::multiply(dest, A, B);
            DLIB_TEST(max(abs(mat(dest)-sum_rows(pointwise_multiply(AA,mat(B))))) < 1e-6); 

            cuda::multiply(dest, B, A);
            DLIB_TEST(max(abs(mat(dest)-sum_rows(pointwise_multiply(AA,mat(B))))) < 1e-6); 

            dest.set_size(3,4);
            cuda::multiply(dest, B, A);
            DLIB_TEST(max(abs(mat(dest)-pointwise_multiply(AA,mat(B)))) < 1e-6); 

            cuda::multiply(dest, A, B);
            DLIB_TEST(max(abs(mat(dest)-pointwise_multiply(AA,mat(B)))) < 1e-6); 
        }
Davis King's avatar
Davis King committed
767
768
    }

769
770
771
772
773
774
775
776
// ----------------------------------------------------------------------------------------

    void compare_bn_gpu_and_cpu()
    {
        print_spinner();
        resizable_tensor dest, dest2;
        resizable_tensor means, means2;
        resizable_tensor invstds, invstds2;
777
778
        resizable_tensor running_means, running_means2;
        resizable_tensor running_invstds, running_invstds2;
779
780
781
782
783
784
785
786
787
        resizable_tensor src(64,20,100,100);
        resizable_tensor gamma(1,20,100,100);
        resizable_tensor beta(1,20,100,100);
        gamma = 2;
        beta = 3;
        tt::tensor_rand rnd;
        rnd.fill_uniform(src);


788
789
        cpu::batch_normalize(dest, means, invstds, 1, running_means, running_invstds, src, gamma, beta);
        cuda::batch_normalize(dest2,means2,invstds2, 1, running_means2, running_invstds2, src, gamma, beta);
790
791
792
793

        dlog << LINFO << "dest error:    "<< max(abs(mat(dest) -mat(dest2)));
        dlog << LINFO << "means error:   "<< max(abs(mat(means) -mat(means2)));
        dlog << LINFO << "invstds error: "<< max(abs(mat(invstds) -mat(invstds2)));
794
795
        dlog << LINFO << "running_means error:   "<< max(abs(mat(running_means) -mat(running_means2)));
        dlog << LINFO << "running_invstds error: "<< max(abs(mat(running_invstds) -mat(running_invstds2)));
796

797
798
799
800
801
        DLIB_TEST(max(abs(mat(dest) -mat(dest2))) < 1e-4);
        DLIB_TEST(max(abs(mat(means) -mat(means2))) < 1e-4);
        DLIB_TEST(max(abs(mat(invstds) -mat(invstds2))) < 1e-4);
        DLIB_TEST(max(abs(mat(running_means) -mat(running_means2))) < 1e-4);
        DLIB_TEST(max(abs(mat(running_invstds) -mat(running_invstds2))) < 1e-4);
802
803
804
805
806
807
808
809
810
811
812
813
814


        // now check that the gradients match as well
        resizable_tensor gradient_input;
        resizable_tensor src_grad, gamma_grad, beta_grad;
        resizable_tensor src_grad2, gamma_grad2, beta_grad2;
        gradient_input.copy_size(dest);
        src_grad.copy_size(src); src_grad = 0; src_grad2 = src_grad;
        gamma_grad.copy_size(gamma); gamma_grad = 0; gamma_grad2 = gamma_grad;
        beta_grad.copy_size(beta); beta_grad = 0; beta_grad2 = beta_grad;
        rnd.fill_uniform(gradient_input);


815
816
        cpu::batch_normalize_gradient(gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
        cuda::batch_normalize_gradient(gradient_input, means, invstds, src, gamma, src_grad2, gamma_grad2, beta_grad2);
817
818
819
820

        dlog << LINFO << "src_grad error:   " << max(abs(mat(src_grad)-mat(src_grad2)));
        dlog << LINFO << "gamma_grad error: " << max(abs(mat(gamma_grad)-mat(gamma_grad2)));
        dlog << LINFO << "beta_grad error:  " << max(abs(mat(beta_grad)-mat(beta_grad2)));
821
822
823
        DLIB_TEST(max(abs(mat(src_grad)-mat(src_grad2))) < 1e-4);
        DLIB_TEST(max(abs(mat(gamma_grad)-mat(gamma_grad2))) < 1e-4);
        DLIB_TEST(max(abs(mat(beta_grad)-mat(beta_grad2))) < 1e-4);
824
825
826
827
828
829
830
831
    }

    void compare_bn_conv_gpu_and_cpu()
    {
        print_spinner();
        resizable_tensor dest, dest2;
        resizable_tensor means, means2;
        resizable_tensor invstds, invstds2;
832
833
        resizable_tensor running_means, running_means2;
        resizable_tensor running_invstds, running_invstds2;
834
835
836
837
838
839
840
841
        resizable_tensor src(2,8,10,9);
        resizable_tensor gamma(1,8);
        resizable_tensor beta(1,8);
        gamma = 2;
        beta = 3;
        tt::tensor_rand rnd;
        rnd.fill_uniform(src);

842
843
        cpu::batch_normalize_conv(dest,means,invstds,1,running_means,running_invstds, src, gamma, beta);
        cuda::batch_normalize_conv(dest2,means2,invstds2,1,running_means2,running_invstds2, src, gamma, beta);
844
845
846
847

        dlog << LINFO << "dest error:    "<< max(abs(mat(dest) -mat(dest2)));
        dlog << LINFO << "means error:   "<< max(abs(mat(means) -mat(means2)));
        dlog << LINFO << "invstds error: "<< max(abs(mat(invstds) -mat(invstds2)));
848
849
        dlog << LINFO << "running_means error:   "<< max(abs(mat(running_means) -mat(running_means2)));
        dlog << LINFO << "running_invstds error: "<< max(abs(mat(running_invstds) -mat(running_invstds2)));
850
851
852
853

        DLIB_TEST(max(abs(mat(dest) -mat(dest2))) < 1e-4);
        DLIB_TEST(max(abs(mat(means) -mat(means2))) < 1e-4);
        DLIB_TEST(max(abs(mat(invstds) -mat(invstds2))) < 1e-4);
854
855
        DLIB_TEST(max(abs(mat(running_means) -mat(running_means2))) < 1e-4);
        DLIB_TEST(max(abs(mat(running_invstds) -mat(running_invstds2))) < 1e-4);
856
857
858
859
860
861
862
863
864
865
866

        resizable_tensor gradient_input;
        resizable_tensor src_grad, gamma_grad, beta_grad;
        resizable_tensor src_grad2, gamma_grad2, beta_grad2;
        gradient_input.copy_size(dest);
        src_grad.copy_size(src); src_grad = 0; src_grad2 = src_grad;
        gamma_grad.copy_size(gamma); gamma_grad = 0; gamma_grad2 = gamma_grad;
        beta_grad.copy_size(beta); beta_grad = 0; beta_grad2 = beta_grad;
        rnd.fill_uniform(gradient_input);


867
868
        cpu::batch_normalize_conv_gradient(gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
        cuda::batch_normalize_conv_gradient(gradient_input, means, invstds, src, gamma, src_grad2, gamma_grad2, beta_grad2);
869
870
871
872
873
874
875
876

        dlog << LINFO << "src_grad error:   " << max(abs(mat(src_grad)-mat(src_grad2)));
        dlog << LINFO << "gamma_grad error: " << max(abs(mat(gamma_grad)-mat(gamma_grad2)));
        dlog << LINFO << "beta_grad error:  " << max(abs(mat(beta_grad)-mat(beta_grad2)));
        DLIB_TEST(max(abs(mat(src_grad)-mat(src_grad2))) < 1e-4);
        DLIB_TEST(max(abs(mat(gamma_grad)-mat(gamma_grad2))) < 1e-4);
        DLIB_TEST(max(abs(mat(beta_grad)-mat(beta_grad2))) < 1e-4);
    }
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971


    void test_more_ops2()
    {
        dlib::rand rnd;
        tt::tensor_rand trand;

        for (int iter = 0; iter < 100; ++iter)
        {
            print_spinner();
            resizable_tensor dest1, dest2, src1, src2;
            src1.set_size(rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1);
            dest1.copy_size(src1);
            dest2.copy_size(src1);
            src2.set_size(1,src1.k(),1,1);

            trand.fill_uniform(dest1);
            trand.fill_uniform(dest2);
            trand.fill_uniform(src1);
            trand.fill_uniform(src2);

            cpu::multiply_conv(dest1, src1, src2);
            cuda::multiply_conv(dest2, src1, src2);
            DLIB_TEST(max(abs(mat(dest1)-mat(dest2))) < 1e-5);


            // now try it using the other mode of multiply_conv
            src2.copy_size(src1);
            dest1.set_size(1,src1.k(),1,1);
            dest2.set_size(1,src1.k(),1,1);
            trand.fill_uniform(dest1);
            trand.fill_uniform(dest2);
            trand.fill_uniform(src1);
            trand.fill_uniform(src2);
            cpu::multiply_conv(dest1, src1, src2);
            cuda::multiply_conv(dest2, src1, src2);
            const float scale = max(abs(mat(dest1)));
            const float scalem = mean(abs(mat(dest1)));
            DLIB_TEST_MSG(max(abs(mat(dest1)-mat(dest2)))/scale < 1e-4 , max(abs(mat(dest1)-mat(dest2)))/scale);
            DLIB_TEST_MSG(mean(abs(mat(dest1)-mat(dest2)))/scalem < 1e-5 , mean(abs(mat(dest1)-mat(dest2)))/scalem);
        }

        for (int iter = 0; iter < 100; ++iter)
        {
            print_spinner();
            resizable_tensor dest1, dest2, src, A, B;
            src.set_size(rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1);
            dest1.copy_size(src);
            dest2.copy_size(src);
            A.set_size(1,src.k(),1,1);
            B.set_size(1,src.k(),1,1);

            trand.fill_uniform(dest1);
            trand.fill_uniform(dest2);
            trand.fill_uniform(src);
            trand.fill_uniform(A);
            trand.fill_uniform(B);

            cpu::affine_transform_conv(dest1, src, A, B);
            cuda::affine_transform_conv(dest2, src, A, B);
            DLIB_TEST(max(abs(mat(dest1)-mat(dest2))) < 1e-5);
        }

        for (int iter = 0; iter < 100; ++iter)
        {
            print_spinner();
            resizable_tensor dest1, dest2, g;
            g.set_size(rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1);
            dest1.set_size(1,g.k(),1,1);
            dest2.set_size(1,g.k(),1,1);

            trand.fill_uniform(dest1);
            trand.fill_uniform(dest2);
            trand.fill_uniform(g);

            cpu::assign_conv_bias_gradient(dest1, g);
            cuda::assign_conv_bias_gradient(dest2, g);
            const float scale = max(abs(mat(dest1)));
            const float scalem = mean(abs(mat(dest1)));
            DLIB_TEST_MSG(max(abs(mat(dest1)-mat(dest2)))/scale < 1e-4 , max(abs(mat(dest1)-mat(dest2)))/scale);
            DLIB_TEST_MSG(mean(abs(mat(dest1)-mat(dest2)))/scalem < 1e-5 , mean(abs(mat(dest1)-mat(dest2)))/scalem);
        }

    }

#endif // DLIB_USE_CUDA
Davis King's avatar
Davis King committed
972

973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
// ----------------------------------------------------------------------------------------

    void test_max_pool(
        const int window_height,
        const int window_width,
        const int stride_y,
        const int stride_x 
    )
    {
        print_spinner();
        resizable_tensor A, B, gradient_input;
        A.set_size(2,2,16,7);
        B.copy_size(A);
        gradient_input.copy_size(A);

        tt::tensor_rand rnd;
        rnd.fill_gaussian(A,0,1);
        rnd.fill_gaussian(B,0,1);
        rnd.fill_gaussian(gradient_input,0,1);


994
        tt::pooling mp;
995

996
        mp.setup_max_pooling(window_height,window_width,stride_y,stride_x);
997
998
        mp(A, B);

999
        // make sure max pooling does what it's spec says it should.
1000
1001
        DLIB_TEST( A.num_samples() == B.num_samples());
        DLIB_TEST( A.k() == B.k());
1002
1003
        DLIB_TEST( A.nr() == 1+(B.nr()-window_height%2)/stride_y);
        DLIB_TEST( A.nc() == 1+(B.nc()-window_width%2)/stride_x);
1004
1005
1006
1007
1008
1009
1010
1011
1012
        for (long s = 0; s < A.num_samples(); ++s)
        {
            for (long k = 0; k < A.k(); ++k)
            {
                for (long r = 0; r < A.nr(); ++r)
                {
                    for (long c = 0; c < A.nc(); ++c)
                    {
                        DLIB_TEST(image_plane(A,s,k)(r,c) == max(subm_clipped(image_plane(B,s,k),
1013
1014
1015
1016
                                    centered_rect(c*stride_x,
                                                  r*stride_y,
                                                  window_width,
                                                  window_height))));
1017
1018
1019
1020
1021
1022
                    }
                }
            }
        }
    }

1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
// ----------------------------------------------------------------------------------------

    void test_avg_pool(
        const int window_height,
        const int window_width,
        const int stride_y,
        const int stride_x 
    )
    {
        print_spinner();
        resizable_tensor A, B, gradient_input;
        A.set_size(2,2,16,7);
        B.copy_size(A);
        gradient_input.copy_size(A);

        tt::tensor_rand rnd;
        rnd.fill_gaussian(A,0,1);
        rnd.fill_gaussian(B,0,1);
        rnd.fill_gaussian(gradient_input,0,1);


        tt::pooling mp;

        mp.setup_avg_pooling(window_height,window_width,stride_y,stride_x);
        mp(A, B);

        // make sure avg pooling does what it's spec says it should.
        DLIB_TEST( A.num_samples() == B.num_samples());
        DLIB_TEST( A.k() == B.k());
        DLIB_TEST( A.nr() == 1+(B.nr()-window_height%2)/stride_y);
        DLIB_TEST( A.nc() == 1+(B.nc()-window_width%2)/stride_x);
        for (long s = 0; s < A.num_samples(); ++s)
        {
            for (long k = 0; k < A.k(); ++k)
            {
                for (long r = 0; r < A.nr(); ++r)
                {
                    for (long c = 0; c < A.nc(); ++c)
                    {
                        float expected = mean(subm_clipped(image_plane(B,s,k),
                                            centered_rect(c*stride_x,
                                                        r*stride_y,
                                                        window_width,
                                                        window_height)));
                        float err = abs(image_plane(A,s,k)(r,c) - expected);
                        DLIB_TEST_MSG(err < 1e-5, err << "  " << expected << "  " << image_plane(A,s,k)(r,c));
                    }
                }
            }
        }
    }

Davis King's avatar
Davis King committed
1075
1076
// ----------------------------------------------------------------------------------------

Davis King's avatar
Davis King committed
1077
1078
    void test_layers()
    {
1079
1080
1081
1082
1083
        {
            print_spinner();
            multiply_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
Davis King's avatar
Davis King committed
1084
1085
        {
            print_spinner();
1086
            max_pool_<3,3,1,1> l;
Davis King's avatar
Davis King committed
1087
1088
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
1089
1090
        {
            print_spinner();
1091
            avg_pool_<3,3,1,1> l;
1092
1093
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
1094
1095
        {
            print_spinner();
1096
            affine_ l(CONV_MODE);
1097
1098
1099
1100
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1101
            affine_ l(FC_MODE);
1102
1103
1104
1105
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1106
            bn_<CONV_MODE> l;
1107
1108
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
Davis King's avatar
Davis King committed
1109
1110
        {
            print_spinner();
1111
            bn_<FC_MODE> l;
Davis King's avatar
Davis King committed
1112
1113
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
Davis King's avatar
Davis King committed
1114
1115
        {
            print_spinner();
1116
            con_<3,3,3,2,2> l;
Davis King's avatar
Davis King committed
1117
1118
1119
1120
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1121
            con_<3,3,3,1,1>l;
Davis King's avatar
Davis King committed
1122
1123
1124
1125
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1126
            con_<3,3,2,1,1> l;
Davis King's avatar
Davis King committed
1127
1128
1129
1130
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1131
            con_<2,1,1,1,1> l;
Davis King's avatar
Davis King committed
1132
1133
1134
1135
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1136
            fc_<1,FC_HAS_BIAS> l;
Davis King's avatar
Davis King committed
1137
1138
1139
1140
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1141
            fc_<5,FC_HAS_BIAS> l;
1142
1143
1144
1145
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1146
            fc_<5,FC_NO_BIAS> l;
Davis King's avatar
Davis King committed
1147
1148
1149
1150
1151
1152
1153
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            relu_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
Davis King's avatar
Davis King committed
1154
1155
1156
1157
1158
        {
            print_spinner();
            prelu_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
Davis King's avatar
Davis King committed
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
        {
            print_spinner();
            sig_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            htan_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            softmax_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
    }

1176
1177
// ----------------------------------------------------------------------------------------

1178
1179
    template <unsigned long n, typename SUBNET> using rcon = max_pool<2,2,2,2,relu<bn_con<con<n,5,5,1,1,SUBNET>>>>;
    template <unsigned long n, typename SUBNET> using rfc = relu<bn_fc<fc<n,FC_HAS_BIAS,SUBNET>>>;
1180
1181
1182
1183

    void test_tagging(
    )
    {
1184
1185
1186
1187
        typedef loss_multiclass_log<rfc<10,skip1<rfc<84,rfc<120,tag1<rcon<16,rcon<6,input<matrix<unsigned char>>>>>>>>>> net_type;

        net_type net;
        net_type net2(num_fc_outputs(4));
1188

1189
1190
        DLIB_TEST(layer<tag1>(net).num_layers == 8);
        DLIB_TEST(layer<skip1>(net).num_layers == 8+3+3);
1191
1192
1193
1194
1195
1196
        DLIB_TEST(&layer<skip1>(net).get_output() == &layer<tag1>(net).get_output());
        DLIB_TEST(&layer<skip1>(net).get_output() != &layer<tag1>(net).subnet().subnet().get_output());
    }

// ----------------------------------------------------------------------------------------

Davis King's avatar
Davis King committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
    class dnn_tester : public tester
    {
    public:
        dnn_tester (
        ) :
            tester ("test_dnn",
                "Runs tests on the deep neural network tools.")
        {}

        void perform_test (
        )
        {
1209
            test_tagging();
1210
#ifdef DLIB_USE_CUDA
1211
            test_conv();
1212
            test_more_ops2();
Davis King's avatar
Davis King committed
1213
1214
1215
1216
1217
1218
            test_more_ops(1,1);
            test_more_ops(3,4);
            test_more_ops(4,3);
            test_more_ops(4,1);
            test_more_ops(1,4);
            test_more_ops(10000,4);
1219
1220
            compare_bn_gpu_and_cpu();
            compare_bn_conv_gpu_and_cpu();
1221
            test_add();
Davis King's avatar
Davis King committed
1222
            compare_adam();
1223
#endif
1224
1225
1226
            test_max_pool(1,1,2,3);
            test_max_pool(3,3,1,1);
            test_max_pool(3,3,2,2);
1227
            test_max_pool(2,2,2,2);
1228
            test_max_pool(4,5,3,1);
1229
1230
1231
1232
1233
            test_avg_pool(1,1,2,3);
            test_avg_pool(3,3,1,1);
            test_avg_pool(3,3,2,2);
            test_avg_pool(2,2,2,2);
            test_avg_pool(4,5,3,1);
Davis King's avatar
Davis King committed
1234
            test_tanh();
1235
            test_softmax();
1236
            test_sigmoid();
Davis King's avatar
Davis King committed
1237
1238
            test_batch_normalize();
            test_batch_normalize_conv();
1239
            test_basic_tensor_ops();
Davis King's avatar
Davis King committed
1240
            test_layers();
Davis King's avatar
Davis King committed
1241
1242
1243
1244
1245
1246
        }
    } a;

}