"...resnet50_tensorflow.git" did not exist on "a540c3d78e4ae04cee0bbec2dfce12a740e95eb2"
dnn.cpp 42.5 KB
Newer Older
Davis King's avatar
Davis King committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.


#include <sstream>
#include <string>
#include <cstdlib>
#include <ctime>
#include <vector>
#include "../dnn.h"

#include "tester.h"


namespace  
{

    using namespace test;
    using namespace dlib;
    using namespace std;

    logger dlog("test.dnn");

// ----------------------------------------------------------------------------------------

    template <typename T>
    float compare_gradients (
        const tensor& t,
        T grad
    )
    {
        float max_error = 0;
        auto p = t.host();
        for (size_t i = 0; i < t.size(); ++i)
        {
            max_error = std::max(max_error, std::abs(p[i]-grad(i)));
        }
        return max_error;
    }

Davis King's avatar
Davis King committed
41
42
43
44
// ----------------------------------------------------------------------------------------

    void test_tanh()
    {
45
        using namespace dlib::tt;
Davis King's avatar
Davis King committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        print_spinner();
        resizable_tensor src(5,5), dest(5,5), gradient_input(5,5);
        src = matrix_cast<float>(gaussian_randm(5,5, 0));
        dest = matrix_cast<float>(gaussian_randm(5,5, 1));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5, 2));



        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
                tanh(dest, src);
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };

        resizable_tensor src_grad;
        src_grad.copy_size(src);
        src_grad = 0;

        tanh(dest, src);
        tanh_gradient(src_grad, dest, gradient_input);

        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);
    }

79
80
    void test_sigmoid()
    {
81
        using namespace dlib::tt;
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        print_spinner();
        resizable_tensor src(5,5), dest(5,5), gradient_input(5,5);
        src = matrix_cast<float>(gaussian_randm(5,5, 0));
        dest = matrix_cast<float>(gaussian_randm(5,5, 1));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5, 2));



        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
                sigmoid(dest, src);
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };

        resizable_tensor src_grad;
        src_grad.copy_size(src);
        src_grad = 0;

        sigmoid(dest, src);
        sigmoid_gradient(src_grad, dest, gradient_input);

        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);
    }

115
116
    void test_softmax()
    {
117
        using namespace dlib::tt;
118
        print_spinner();
Davis King's avatar
Davis King committed
119
120
121
122
123
124
        const long nr = 3;
        const long nc = 3;
        resizable_tensor src(5,5,nr,nr), dest(5,5,nr,nc), gradient_input(5,5,nr,nc);
        src = matrix_cast<float>(gaussian_randm(5,5*nr*nc, 0));
        dest = matrix_cast<float>(gaussian_randm(5,5*nr*nc, 1));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5*nr*nc, 2));
125
126
127
128
129
130
131



        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
Davis King's avatar
Davis King committed
132
                tt::softmax(dest, src);
133
134
135
136
137
138
139
140
141
142
143
144
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };

        resizable_tensor src_grad;
        src_grad.copy_size(src);
        src_grad = 0;

Davis King's avatar
Davis King committed
145
        tt::softmax(dest, src);
146
147
148
149
150
151
152
        softmax_gradient(src_grad, dest, gradient_input);

        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);
    }

Davis King's avatar
Davis King committed
153
154
    void test_batch_normalize()
    {
155
        using namespace dlib::tt;
156
        print_spinner();
157
        resizable_tensor src(5,5), gamma(1,5), beta(1,5), dest, dest2, means, vars, gradient_input(5,5);
Davis King's avatar
Davis King committed
158
159
160
161
162
163
164
165
        src = matrix_cast<float>(gaussian_randm(5,5, 0));
        gamma = matrix_cast<float>(gaussian_randm(1,5, 1));
        beta = matrix_cast<float>(gaussian_randm(1,5, 2));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5, 3));

        gamma = 1;
        beta = 0;

166
167
168
169
170
        resizable_tensor running_means;
        resizable_tensor running_invstds;
        batch_normalize(dest, means, vars, 1, running_means, running_invstds, src, gamma, beta);
        batch_normalize_inference(dest2, src, gamma, beta, running_means, running_invstds);
        DLIB_TEST(max(abs(mat(dest2)-mat(dest))) < 1e-5);
Davis King's avatar
Davis King committed
171
172
173
174
175
176


        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
177
                batch_normalize(dest, means, vars, 1, running_means, running_invstds, src, gamma, beta);
Davis King's avatar
Davis King committed
178
179
180
181
182
183
184
185
186
187
188
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };
        auto grad_gamma = [&](long idx) {
            auto f = [&](float eps) {
                const float old = gamma.host()[idx];
                gamma.host()[idx] += eps;
189
                batch_normalize(dest, means, vars, 1, running_means, running_invstds, src, gamma, beta);
Davis King's avatar
Davis King committed
190
191
192
193
194
195
196
197
198
199
200
                float result = dot(gradient_input, dest);
                gamma.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };
        auto grad_beta = [&](long idx) {
            auto f = [&](float eps) {
                const float old = beta.host()[idx];
                beta.host()[idx] += eps;
201
                batch_normalize(dest, means, vars, 1, running_means, running_invstds, src, gamma, beta);
Davis King's avatar
Davis King committed
202
203
204
205
206
207
208
209
210
211
212
213
214
                float result = dot(gradient_input, dest);
                beta.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };

        resizable_tensor src_grad, gamma_grad, beta_grad;
        src_grad.copy_size(src);
        gamma_grad.copy_size(gamma);
        beta_grad.copy_size(beta);
        src_grad = 0;
Davis King's avatar
Davis King committed
215
216
        gamma_grad = 8;
        beta_grad = 8;
Davis King's avatar
Davis King committed
217

218
        batch_normalize_gradient(gradient_input, means, vars, src, gamma, src_grad, gamma_grad, beta_grad);
Davis King's avatar
Davis King committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

        grad_error = compare_gradients(gamma_grad, grad_gamma);
        dlog << LINFO << "gamma error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

        grad_error = compare_gradients(beta_grad, grad_beta);
        dlog << LINFO << "beta error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);
    }

    void test_batch_normalize_conv()
    {
235
        using namespace dlib::tt;
236
        print_spinner();
237
        resizable_tensor src(5,5,4,4), gamma(1,5), beta(1,5), dest, dest2, means, vars, gradient_input(5,5,4,4);
Davis King's avatar
Davis King committed
238
239
240
241
242
243
244
245
        src = matrix_cast<float>(gaussian_randm(5,5*4*4, 0));
        gamma = matrix_cast<float>(gaussian_randm(1,5, 1));
        beta = matrix_cast<float>(gaussian_randm(1,5, 2));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5*4*4, 3));

        gamma = 1;
        beta = 0;

246
247
248
249
250
        resizable_tensor running_means;
        resizable_tensor running_invstds;
        batch_normalize_conv(dest, means, vars, 1, running_means, running_invstds, src, gamma, beta);
        batch_normalize_conv_inference(dest2, src, gamma, beta, running_means, running_invstds);
        DLIB_TEST(max(abs(mat(dest2)-mat(dest))) < 1e-5);
Davis King's avatar
Davis King committed
251
252
253
254
255
256


        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
257
                batch_normalize_conv(dest, means, vars, 1, running_means, running_invstds, src, gamma, beta);
Davis King's avatar
Davis King committed
258
259
260
261
262
263
264
265
266
267
268
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };
        auto grad_gamma = [&](long idx) {
            auto f = [&](float eps) {
                const float old = gamma.host()[idx];
                gamma.host()[idx] += eps;
269
                batch_normalize_conv(dest, means, vars, 1, running_means, running_invstds, src, gamma, beta);
Davis King's avatar
Davis King committed
270
271
272
273
274
275
276
277
278
279
280
                float result = dot(gradient_input, dest);
                gamma.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };
        auto grad_beta = [&](long idx) {
            auto f = [&](float eps) {
                const float old = beta.host()[idx];
                beta.host()[idx] += eps;
281
                batch_normalize_conv(dest, means, vars, 1, running_means, running_invstds, src, gamma, beta);
Davis King's avatar
Davis King committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
                float result = dot(gradient_input, dest);
                beta.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };


        resizable_tensor src_grad, gamma_grad, beta_grad;
        src_grad.copy_size(src);
        gamma_grad.copy_size(gamma);
        beta_grad.copy_size(beta);
        src_grad = 0;
Davis King's avatar
Davis King committed
296
297
        gamma_grad = 9;
        beta_grad = 9;
Davis King's avatar
Davis King committed
298

299
        batch_normalize_conv_gradient(gradient_input, means, vars, src, gamma, src_grad, gamma_grad, beta_grad);
Davis King's avatar
Davis King committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315


        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

        grad_error = compare_gradients(gamma_grad, grad_gamma);
        dlog << LINFO << "gamma error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

        grad_error = compare_gradients(beta_grad, grad_beta);
        dlog << LINFO << "beta error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

    }

316
317
318
319
// ----------------------------------------------------------------------------------------

    void test_basic_tensor_ops()
    {
320
        using namespace dlib::tt;
321
322
323
        print_spinner();
        resizable_tensor dest, src(3,4), A(1,4), B(1,4);
        src = 2;
324
        dest.copy_size(src);
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
        affine_transform(dest, src, 2, 3);
        dlog << LINFO << mat(dest);
        matrix<float> truth1(3,4), truth2(3,4);

        truth1 = 7;
        truth2 = 7, 10,  7,  7,
        7, 10,  7,  7,
        7, 10,  7,  7;
        DLIB_TEST(max(abs(truth1-mat(dest))) < 1e-5);

        A = 2;
        B = 3;
        A.host()[1] = 3;
        B.host()[1] = 4;
        dest = 0;
        affine_transform(dest, src, A, B);
        dlog << LINFO << mat(dest);
        DLIB_TEST(max(abs(truth2-mat(dest))) < 1e-5);

        A.set_size(3,4);
        B.set_size(3,4);
        A = matrix_cast<float>(gaussian_randm(3,4, 1));
        B = matrix_cast<float>(gaussian_randm(3,4, 2));
        affine_transform(dest, src, A, B);
        dlog << LINFO << mat(dest);
        matrix<float> truth3 = pointwise_multiply(mat(src), mat(A)) + mat(B);
        DLIB_TEST(max(abs(truth3-mat(dest))) < 1e-5);

        matrix<float> truth4 = pointwise_multiply(mat(A), mat(B));
354
        tt::multiply(A, A, B);
355
356
357
358
359
360
        DLIB_TEST(max(abs(truth4-mat(A))) < 1e-5);

        matrix<float> truth5 = mat(B) > 0.1;
        dlog << LINFO << truth5;
        threshold(B, 0.1);
        DLIB_TEST(max(abs(truth5-mat(B))) < 1e-5);
Davis King's avatar
Davis King committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

        int cnt = 0;
        for(auto& x : A)
            x = cnt++;

        truth1.set_size(2,2);
        truth2.set_size(2,2);
        truth3.set_size(2,2);
        truth1 = 0,1,2,3;
        truth2 = 4,5,6,7;
        truth3 = 8,9,10,11;

        alias_tensor at(2,2);
        auto A0 = at(A,0);
        auto A4 = at(A,4);
        auto A8 = at(A,8);
        DLIB_TEST(mat(A0) == truth1);
        DLIB_TEST(mat(at(A,4)) == truth2);
        DLIB_TEST(mat(A8) == truth3);

        A4 += uniform_matrix<float>(2,2,2);
        truth2 += 2;
        DLIB_TEST(mat(A4) == truth2);
        truth1 = trans(reshape_to_column_vector(truth1));
        truth2 = trans(reshape_to_column_vector(truth2));
        truth3 = trans(reshape_to_column_vector(truth3));

        DLIB_TEST(mat(A) == join_cols(truth1,join_cols(truth2,truth3)));

        affine_transform(A,A,1,2);
        truth1 += 2;
        truth2 += 2;
        truth3 += 2;
        DLIB_TEST(mat(at(A,4)) == reshape(truth2,2,2));
        DLIB_TEST(mat(A) == join_cols(truth1,join_cols(truth2,truth3)));
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

        {
            resizable_tensor dest(3,4);
            resizable_tensor A, B;
            A = dest;
            B = dest;

            tensor_rand rnd;
            rnd.fill_uniform(dest);
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);

            dest.set_size(1,4);

            tt::multiply(dest, A, B);
            DLIB_TEST(max(abs(mat(dest)-sum_rows(pointwise_multiply(mat(A),mat(B))))) < 1e-6); 

            A.set_size(1,4);
            rnd.fill_uniform(A);
            matrix<float> AA = join_cols(mat(A),mat(A)); AA = join_cols(mat(A),AA);

            tt::multiply(dest, A, B);
            DLIB_TEST(max(abs(mat(dest)-sum_rows(pointwise_multiply(AA,mat(B))))) < 1e-6); 

            tt::multiply(dest, B, A);
            DLIB_TEST(max(abs(mat(dest)-sum_rows(pointwise_multiply(AA,mat(B))))) < 1e-6); 

            dest.set_size(3,4);
            tt::multiply(dest, B, A);
            DLIB_TEST(max(abs(mat(dest)-pointwise_multiply(AA,mat(B)))) < 1e-6); 

            tt::multiply(dest, A, B);
            DLIB_TEST(max(abs(mat(dest)-pointwise_multiply(AA,mat(B)))) < 1e-6); 
        }
Davis King's avatar
Davis King committed
430
431
432

        {
            resizable_tensor A, B;
Davis King's avatar
Davis King committed
433
434
            A.set_size(2,3,4,5);
            B.set_size(2,3,4,5);
Davis King's avatar
Davis King committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

            tensor_rand rnd;
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);

            matrix<float> truth;

            truth = 2*mat(A) + 3*mat(B);
            tt::add(2, A, 3, B);
            DLIB_TEST(max(abs(mat(A)-truth )) < 1e-6);


            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
            truth = 0*mat(A) + 3*mat(B);
            tt::add(0, A, 3, B);
            DLIB_TEST(max(abs(mat(A)-truth )) < 1e-6);

            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
            truth = 1*mat(A) + 0*mat(B);
            tt::add(1, A, 0, B);
            DLIB_TEST(max(abs(mat(A)-truth )) < 1e-6);


            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
            truth = 0*mat(A) + 0*mat(B);
            tt::add(0, A, 0, B);
            DLIB_TEST(max(abs(mat(A)-truth )) < 1e-6);


Davis King's avatar
Davis King committed
467
            B.set_size(1,3,4,5);
Davis King's avatar
Davis King committed
468
469
470
471
472
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
            truth = 2*mat(A) + 3*join_cols(mat(B), mat(B));
            tt::add(2, A, 3, B);
            DLIB_TEST(max(abs(mat(A)-truth )) < 1e-6);
Davis King's avatar
Davis King committed
473
            DLIB_TEST(A.num_samples()==2);
Davis King's avatar
Davis King committed
474

Davis King's avatar
Davis King committed
475
            B.set_size(1,1,4,5);
Davis King's avatar
Davis King committed
476
477
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
Davis King's avatar
Davis King committed
478
479
            matrix<float> temp = join_rows(mat(B), join_rows(mat(B),mat(B)));
            truth = 2*mat(A) + 3*join_cols(temp,temp);
Davis King's avatar
Davis King committed
480
            tt::add(2, A, 3, B);
Davis King's avatar
Davis King committed
481
482
483
484
485
486
487
488
489
            DLIB_TEST_MSG(max(abs(mat(A)-truth )) < 1e-6, max(abs(mat(A)-truth )));

            B.set_size(1,3,1,1);
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
            resizable_tensor AA(A), BB(B);
            tt::add(2, A, 3, B);
            cpu::add(2, AA, 3, BB);
            DLIB_TEST_MSG(max(abs(mat(A)-mat(AA) )) < 1e-6, max(abs(mat(A)-mat(AA) )));
Davis King's avatar
Davis King committed
490
        }
491
492
    }

Davis King's avatar
Davis King committed
493
494
// ----------------------------------------------------------------------------------------

495
#ifdef DLIB_USE_CUDA
496

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
    void test_conv()
    {
        cuda::tensor_conv conv1;
        cpu::tensor_conv conv2;

        dlib::rand prnd;
        for (int iter = 0; iter < 400; ++iter)
        {
            print_spinner();

            resizable_tensor data(prnd.get_random_32bit_number()%5+1,
                prnd.get_random_32bit_number()%5+1,
                prnd.get_random_32bit_number()%30+1,
                prnd.get_random_32bit_number()%30+1
            );
            resizable_tensor filters(
                prnd.get_random_32bit_number()%5+1,
                data.k(),
                prnd.get_random_32bit_number()%6+1,
                prnd.get_random_32bit_number()%6+1 
            );

            tt::tensor_rand rnd;
            rnd.fill_uniform(data);
            rnd.fill_uniform(filters);


            resizable_tensor output1, output2;


            const int stride_y = prnd.get_random_32bit_number()%5+1;
            const int stride_x = prnd.get_random_32bit_number()%5+1;
            conv1(output1, data, filters, stride_y,stride_x);

            conv2(output2, data, filters, stride_y,stride_x);

            dlog << LINFO << "forward error: "<< max(abs(mat(output1)-mat(output2)));
            DLIB_TEST(max(abs(mat(output1)-mat(output2))) < 1e-3);



            resizable_tensor gi, data_gradient1, data_gradient2;
            gi.copy_size(output1);
            rnd.fill_uniform(gi);

            data_gradient1.copy_size(data);
            data_gradient2.copy_size(data);
            data_gradient1 = 1;
            data_gradient2 = 1;

            conv1.get_gradient_for_data(gi, filters, data_gradient1);
            conv2.get_gradient_for_data(gi, filters, data_gradient2);

            dlog << LINFO << "data gradient error: "<< max(abs(mat(data_gradient1)-mat(data_gradient2)));
            DLIB_TEST(max(abs(mat(data_gradient1)-mat(data_gradient2))) < 1e-3);


            resizable_tensor filter_gradient1, filter_gradient2;
            gi.copy_size(output1);
            rnd.fill_uniform(gi);

            filter_gradient1.copy_size(filters);
            filter_gradient2.copy_size(filters);
            filter_gradient1 = 1;
            filter_gradient2 = 1;

            conv1.get_gradient_for_filters(gi, data, filter_gradient1);
            conv2.get_gradient_for_filters(gi, data, filter_gradient2);

            dlog << LINFO << "filter gradient error: "<< max(abs(mat(filter_gradient1)-mat(filter_gradient2)));
            DLIB_TEST(max(abs(mat(filter_gradient1)-mat(filter_gradient2))) < 1e-3);
        }
    }

Davis King's avatar
Davis King committed
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
    void compare_adam()
    {
        float t = 2;
        tt::tensor_rand rnd;
        resizable_tensor s, m, v, params, params_grad;
        s.set_size(89,90,60,73);
        m.copy_size(s);
        v.copy_size(s);
        params.copy_size(s);
        params_grad.copy_size(s);

        rnd.fill_uniform(s);
        rnd.fill_uniform(m);
        rnd.fill_uniform(v);
        rnd.fill_uniform(params);
        rnd.fill_uniform(params_grad);

        resizable_tensor mm(m), vv(v);
        cpu::compute_adam_update(s, mm, vv, t, 0.01, 0.001, 0.9, 0.99, params, params_grad);
        matrix<float> s1 = mat(s);
        
        rnd.fill_uniform(s);
        cuda::compute_adam_update(s, m, v, t, 0.01, 0.001, 0.9, 0.99, params, params_grad);
        matrix<float> s2 = mat(s);

        DLIB_TEST_MSG(max(abs(s1-s2)) < 1e-6, max(abs(s1-s2)));
        DLIB_TEST_MSG(max(abs(mat(m)-mat(mm))) < 1e-6, max(abs(mat(m)-mat(mm))));
        DLIB_TEST_MSG(max(abs(mat(v)-mat(vv))) < 1e-6, max(abs(mat(v)-mat(vv))));
    }

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
    void test_add()
    {
        print_spinner();
        dlib::rand rnd;
        tt::tensor_rand trnd;
        for (int iter = 0; iter < 300; ++iter)
        {
            resizable_tensor dest1(rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1);
            resizable_tensor dest2;
            dest2.copy_size(dest1);
            resizable_tensor src1(rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1);
            resizable_tensor src2(rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1);

            trnd.fill_uniform(dest1);
            trnd.fill_uniform(dest2);
            trnd.fill_uniform(src1);
            trnd.fill_uniform(src2);
            cpu::add(dest1, src1, src2);
            cuda::add(dest2, src1, src2);

            DLIB_TEST(max(abs(mat(dest1) - mat(dest2))) < 1e-5);
        }

        // make sure we have a test for the case where all tensors have the same
        // dimensions.
        resizable_tensor dest1(3,4,5,6);
        resizable_tensor dest2;
        resizable_tensor src1;
        resizable_tensor src2;
        dest2.copy_size(dest1);
        src1.copy_size(dest1);
        src2.copy_size(dest1);

        trnd.fill_uniform(dest1);
        trnd.fill_uniform(dest2);
        trnd.fill_uniform(src1);
        trnd.fill_uniform(src2);

        cpu::add(dest1, src1, src2);
        cuda::add(dest2, src1, src2);

        DLIB_TEST(max(abs(mat(dest1) - mat(dest2))) < 1e-5);
    }

Davis King's avatar
Davis King committed
654
655
    void test_more_ops(const long nr, const long nc)
    {
656
        using namespace dlib::tt;
Davis King's avatar
Davis King committed
657
658
659
660
661
662
663
664
665
666
667
668
669
        print_spinner();
        // We are going to make sure that the CPU implementation of these things matches
        // the CUDA implementation.

        tensor_rand rnd;

        resizable_tensor dest(nr,nc), src(nr,nc), dest2, src2;
        resizable_tensor srcb(nr,nc), srcc(nr,nc), srcb2, srcc2;


        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        dest2 = dest; src2 = src;
670
671
        cuda::multiply(dest, dest, src);
        cpu::multiply(dest2, dest2, src2);
Davis King's avatar
Davis King committed
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
        DLIB_TEST(equal(mat(dest),mat(dest2)));


        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        dest2 = dest; src2 = src;
        cuda::affine_transform(dest, src, 2, 3);
        cpu::affine_transform(dest2, src2, 2, 3);
        DLIB_TEST(equal(mat(dest),mat(dest2)));

        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        rnd.fill_uniform(srcb);
        dest2 = dest; src2 = src; srcb2 = srcb;
        cuda::affine_transform(dest, src, srcb, 2, 3, 4);
        cpu::affine_transform(dest2, src2, srcb2, 2, 3, 4);
        DLIB_TEST(equal(mat(dest),mat(dest2)));

        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        rnd.fill_uniform(srcb);
        rnd.fill_uniform(srcc);
        dest2 = dest; src2 = src; srcb2 = srcb; srcc2 = srcc;
        cuda::affine_transform(dest, src, srcb, srcc, 2, 3, 4, 5);
        cpu::affine_transform(dest2, src2, srcb2, srcc2, 2, 3, 4, 5);
        DLIB_TEST(equal(mat(dest),mat(dest2)));


        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        rnd.fill_uniform(srcb);
        rnd.fill_uniform(srcc);
        dest2 = dest; src2 = src; srcb2 = srcb; srcc2 = srcc;
        cuda::affine_transform(dest, src, srcb, srcc);
        cpu::affine_transform(dest2, src2, srcb2, srcc2);
        DLIB_TEST(equal(mat(dest),mat(dest2)));
        // now exercise code path where the A/B tensors have num_samples()==1
        srcb.set_size(1,nc);
        srcc.set_size(1,nc);
        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        rnd.fill_uniform(srcb);
        rnd.fill_uniform(srcc);
        dest2 = dest; src2 = src; srcb2 = srcb; srcc2 = srcc;
        cuda::affine_transform(dest, src, srcb, srcc);
        cpu::affine_transform(dest2, src2, srcb2, srcc2);
        DLIB_TEST(equal(mat(dest),mat(dest2)));


        rnd.fill_uniform(src);
        src2 = src;
        cuda::threshold(src, 0.5);
        cpu::threshold(src2, 0.5);
        DLIB_TEST(equal(mat(src),mat(src2)));

727
728
729
730
731
732
733
734
735
736
737
738
739
740
        {
            resizable_tensor dest(3,4);
            resizable_tensor A, B;
            A = dest;
            B = dest;

            tensor_rand rnd;
            rnd.fill_uniform(dest);
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);

            dest.set_size(1,4);

            cuda::multiply(dest, A, B);
741
            DLIB_TEST_MSG(max(abs(mat(dest)-sum_rows(pointwise_multiply(mat(A),mat(B))))) < 1e-6, max(abs(mat(dest)-sum_rows(pointwise_multiply(mat(A),mat(B)))))); 
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759

            A.set_size(1,4);
            rnd.fill_uniform(A);
            matrix<float> AA = join_cols(mat(A),mat(A)); AA = join_cols(mat(A),AA);

            cuda::multiply(dest, A, B);
            DLIB_TEST(max(abs(mat(dest)-sum_rows(pointwise_multiply(AA,mat(B))))) < 1e-6); 

            cuda::multiply(dest, B, A);
            DLIB_TEST(max(abs(mat(dest)-sum_rows(pointwise_multiply(AA,mat(B))))) < 1e-6); 

            dest.set_size(3,4);
            cuda::multiply(dest, B, A);
            DLIB_TEST(max(abs(mat(dest)-pointwise_multiply(AA,mat(B)))) < 1e-6); 

            cuda::multiply(dest, A, B);
            DLIB_TEST(max(abs(mat(dest)-pointwise_multiply(AA,mat(B)))) < 1e-6); 
        }
Davis King's avatar
Davis King committed
760
761
    }

762
763
764
765
766
767
768
769
// ----------------------------------------------------------------------------------------

    void compare_bn_gpu_and_cpu()
    {
        print_spinner();
        resizable_tensor dest, dest2;
        resizable_tensor means, means2;
        resizable_tensor invstds, invstds2;
770
771
        resizable_tensor running_means, running_means2;
        resizable_tensor running_invstds, running_invstds2;
772
773
774
775
776
777
778
779
780
        resizable_tensor src(64,20,100,100);
        resizable_tensor gamma(1,20,100,100);
        resizable_tensor beta(1,20,100,100);
        gamma = 2;
        beta = 3;
        tt::tensor_rand rnd;
        rnd.fill_uniform(src);


781
782
        cpu::batch_normalize(dest, means, invstds, 1, running_means, running_invstds, src, gamma, beta);
        cuda::batch_normalize(dest2,means2,invstds2, 1, running_means2, running_invstds2, src, gamma, beta);
783
784
785
786

        dlog << LINFO << "dest error:    "<< max(abs(mat(dest) -mat(dest2)));
        dlog << LINFO << "means error:   "<< max(abs(mat(means) -mat(means2)));
        dlog << LINFO << "invstds error: "<< max(abs(mat(invstds) -mat(invstds2)));
787
788
        dlog << LINFO << "running_means error:   "<< max(abs(mat(running_means) -mat(running_means2)));
        dlog << LINFO << "running_invstds error: "<< max(abs(mat(running_invstds) -mat(running_invstds2)));
789

790
791
792
793
794
        DLIB_TEST(max(abs(mat(dest) -mat(dest2))) < 1e-4);
        DLIB_TEST(max(abs(mat(means) -mat(means2))) < 1e-4);
        DLIB_TEST(max(abs(mat(invstds) -mat(invstds2))) < 1e-4);
        DLIB_TEST(max(abs(mat(running_means) -mat(running_means2))) < 1e-4);
        DLIB_TEST(max(abs(mat(running_invstds) -mat(running_invstds2))) < 1e-4);
795
796
797
798
799
800
801
802
803
804
805
806
807


        // now check that the gradients match as well
        resizable_tensor gradient_input;
        resizable_tensor src_grad, gamma_grad, beta_grad;
        resizable_tensor src_grad2, gamma_grad2, beta_grad2;
        gradient_input.copy_size(dest);
        src_grad.copy_size(src); src_grad = 0; src_grad2 = src_grad;
        gamma_grad.copy_size(gamma); gamma_grad = 0; gamma_grad2 = gamma_grad;
        beta_grad.copy_size(beta); beta_grad = 0; beta_grad2 = beta_grad;
        rnd.fill_uniform(gradient_input);


808
809
        cpu::batch_normalize_gradient(gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
        cuda::batch_normalize_gradient(gradient_input, means, invstds, src, gamma, src_grad2, gamma_grad2, beta_grad2);
810
811
812
813

        dlog << LINFO << "src_grad error:   " << max(abs(mat(src_grad)-mat(src_grad2)));
        dlog << LINFO << "gamma_grad error: " << max(abs(mat(gamma_grad)-mat(gamma_grad2)));
        dlog << LINFO << "beta_grad error:  " << max(abs(mat(beta_grad)-mat(beta_grad2)));
814
815
816
        DLIB_TEST(max(abs(mat(src_grad)-mat(src_grad2))) < 1e-4);
        DLIB_TEST(max(abs(mat(gamma_grad)-mat(gamma_grad2))) < 1e-4);
        DLIB_TEST(max(abs(mat(beta_grad)-mat(beta_grad2))) < 1e-4);
817
818
819
820
821
822
823
824
    }

    void compare_bn_conv_gpu_and_cpu()
    {
        print_spinner();
        resizable_tensor dest, dest2;
        resizable_tensor means, means2;
        resizable_tensor invstds, invstds2;
825
826
        resizable_tensor running_means, running_means2;
        resizable_tensor running_invstds, running_invstds2;
827
828
829
830
831
832
833
834
        resizable_tensor src(2,8,10,9);
        resizable_tensor gamma(1,8);
        resizable_tensor beta(1,8);
        gamma = 2;
        beta = 3;
        tt::tensor_rand rnd;
        rnd.fill_uniform(src);

835
836
        cpu::batch_normalize_conv(dest,means,invstds,1,running_means,running_invstds, src, gamma, beta);
        cuda::batch_normalize_conv(dest2,means2,invstds2,1,running_means2,running_invstds2, src, gamma, beta);
837
838
839
840

        dlog << LINFO << "dest error:    "<< max(abs(mat(dest) -mat(dest2)));
        dlog << LINFO << "means error:   "<< max(abs(mat(means) -mat(means2)));
        dlog << LINFO << "invstds error: "<< max(abs(mat(invstds) -mat(invstds2)));
841
842
        dlog << LINFO << "running_means error:   "<< max(abs(mat(running_means) -mat(running_means2)));
        dlog << LINFO << "running_invstds error: "<< max(abs(mat(running_invstds) -mat(running_invstds2)));
843
844
845
846

        DLIB_TEST(max(abs(mat(dest) -mat(dest2))) < 1e-4);
        DLIB_TEST(max(abs(mat(means) -mat(means2))) < 1e-4);
        DLIB_TEST(max(abs(mat(invstds) -mat(invstds2))) < 1e-4);
847
848
        DLIB_TEST(max(abs(mat(running_means) -mat(running_means2))) < 1e-4);
        DLIB_TEST(max(abs(mat(running_invstds) -mat(running_invstds2))) < 1e-4);
849
850
851
852
853
854
855
856
857
858
859

        resizable_tensor gradient_input;
        resizable_tensor src_grad, gamma_grad, beta_grad;
        resizable_tensor src_grad2, gamma_grad2, beta_grad2;
        gradient_input.copy_size(dest);
        src_grad.copy_size(src); src_grad = 0; src_grad2 = src_grad;
        gamma_grad.copy_size(gamma); gamma_grad = 0; gamma_grad2 = gamma_grad;
        beta_grad.copy_size(beta); beta_grad = 0; beta_grad2 = beta_grad;
        rnd.fill_uniform(gradient_input);


860
861
        cpu::batch_normalize_conv_gradient(gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
        cuda::batch_normalize_conv_gradient(gradient_input, means, invstds, src, gamma, src_grad2, gamma_grad2, beta_grad2);
862
863
864
865
866
867
868
869

        dlog << LINFO << "src_grad error:   " << max(abs(mat(src_grad)-mat(src_grad2)));
        dlog << LINFO << "gamma_grad error: " << max(abs(mat(gamma_grad)-mat(gamma_grad2)));
        dlog << LINFO << "beta_grad error:  " << max(abs(mat(beta_grad)-mat(beta_grad2)));
        DLIB_TEST(max(abs(mat(src_grad)-mat(src_grad2))) < 1e-4);
        DLIB_TEST(max(abs(mat(gamma_grad)-mat(gamma_grad2))) < 1e-4);
        DLIB_TEST(max(abs(mat(beta_grad)-mat(beta_grad2))) < 1e-4);
    }
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964


    void test_more_ops2()
    {
        dlib::rand rnd;
        tt::tensor_rand trand;

        for (int iter = 0; iter < 100; ++iter)
        {
            print_spinner();
            resizable_tensor dest1, dest2, src1, src2;
            src1.set_size(rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1);
            dest1.copy_size(src1);
            dest2.copy_size(src1);
            src2.set_size(1,src1.k(),1,1);

            trand.fill_uniform(dest1);
            trand.fill_uniform(dest2);
            trand.fill_uniform(src1);
            trand.fill_uniform(src2);

            cpu::multiply_conv(dest1, src1, src2);
            cuda::multiply_conv(dest2, src1, src2);
            DLIB_TEST(max(abs(mat(dest1)-mat(dest2))) < 1e-5);


            // now try it using the other mode of multiply_conv
            src2.copy_size(src1);
            dest1.set_size(1,src1.k(),1,1);
            dest2.set_size(1,src1.k(),1,1);
            trand.fill_uniform(dest1);
            trand.fill_uniform(dest2);
            trand.fill_uniform(src1);
            trand.fill_uniform(src2);
            cpu::multiply_conv(dest1, src1, src2);
            cuda::multiply_conv(dest2, src1, src2);
            const float scale = max(abs(mat(dest1)));
            const float scalem = mean(abs(mat(dest1)));
            DLIB_TEST_MSG(max(abs(mat(dest1)-mat(dest2)))/scale < 1e-4 , max(abs(mat(dest1)-mat(dest2)))/scale);
            DLIB_TEST_MSG(mean(abs(mat(dest1)-mat(dest2)))/scalem < 1e-5 , mean(abs(mat(dest1)-mat(dest2)))/scalem);
        }

        for (int iter = 0; iter < 100; ++iter)
        {
            print_spinner();
            resizable_tensor dest1, dest2, src, A, B;
            src.set_size(rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1);
            dest1.copy_size(src);
            dest2.copy_size(src);
            A.set_size(1,src.k(),1,1);
            B.set_size(1,src.k(),1,1);

            trand.fill_uniform(dest1);
            trand.fill_uniform(dest2);
            trand.fill_uniform(src);
            trand.fill_uniform(A);
            trand.fill_uniform(B);

            cpu::affine_transform_conv(dest1, src, A, B);
            cuda::affine_transform_conv(dest2, src, A, B);
            DLIB_TEST(max(abs(mat(dest1)-mat(dest2))) < 1e-5);
        }

        for (int iter = 0; iter < 100; ++iter)
        {
            print_spinner();
            resizable_tensor dest1, dest2, g;
            g.set_size(rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1);
            dest1.set_size(1,g.k(),1,1);
            dest2.set_size(1,g.k(),1,1);

            trand.fill_uniform(dest1);
            trand.fill_uniform(dest2);
            trand.fill_uniform(g);

            cpu::assign_conv_bias_gradient(dest1, g);
            cuda::assign_conv_bias_gradient(dest2, g);
            const float scale = max(abs(mat(dest1)));
            const float scalem = mean(abs(mat(dest1)));
            DLIB_TEST_MSG(max(abs(mat(dest1)-mat(dest2)))/scale < 1e-4 , max(abs(mat(dest1)-mat(dest2)))/scale);
            DLIB_TEST_MSG(mean(abs(mat(dest1)-mat(dest2)))/scalem < 1e-5 , mean(abs(mat(dest1)-mat(dest2)))/scalem);
        }

    }

#endif // DLIB_USE_CUDA
Davis King's avatar
Davis King committed
965

966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
// ----------------------------------------------------------------------------------------

    void test_max_pool(
        const int window_height,
        const int window_width,
        const int stride_y,
        const int stride_x 
    )
    {
        print_spinner();
        resizable_tensor A, B, gradient_input;
        A.set_size(2,2,16,7);
        B.copy_size(A);
        gradient_input.copy_size(A);

        tt::tensor_rand rnd;
        rnd.fill_gaussian(A,0,1);
        rnd.fill_gaussian(B,0,1);
        rnd.fill_gaussian(gradient_input,0,1);


987
        tt::pooling mp;
988

989
        mp.setup_max_pooling(window_height,window_width,stride_y,stride_x);
990
991
        mp(A, B);

992
        // make sure max pooling does what it's spec says it should.
993
994
        DLIB_TEST( A.num_samples() == B.num_samples());
        DLIB_TEST( A.k() == B.k());
995
996
        DLIB_TEST( A.nr() == 1+(B.nr()-window_height%2)/stride_y);
        DLIB_TEST( A.nc() == 1+(B.nc()-window_width%2)/stride_x);
997
998
999
1000
1001
1002
1003
1004
1005
        for (long s = 0; s < A.num_samples(); ++s)
        {
            for (long k = 0; k < A.k(); ++k)
            {
                for (long r = 0; r < A.nr(); ++r)
                {
                    for (long c = 0; c < A.nc(); ++c)
                    {
                        DLIB_TEST(image_plane(A,s,k)(r,c) == max(subm_clipped(image_plane(B,s,k),
1006
1007
1008
1009
                                    centered_rect(c*stride_x,
                                                  r*stride_y,
                                                  window_width,
                                                  window_height))));
1010
1011
1012
1013
1014
1015
                    }
                }
            }
        }
    }

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
// ----------------------------------------------------------------------------------------

    void test_avg_pool(
        const int window_height,
        const int window_width,
        const int stride_y,
        const int stride_x 
    )
    {
        print_spinner();
        resizable_tensor A, B, gradient_input;
        A.set_size(2,2,16,7);
        B.copy_size(A);
        gradient_input.copy_size(A);

        tt::tensor_rand rnd;
        rnd.fill_gaussian(A,0,1);
        rnd.fill_gaussian(B,0,1);
        rnd.fill_gaussian(gradient_input,0,1);


        tt::pooling mp;

        mp.setup_avg_pooling(window_height,window_width,stride_y,stride_x);
        mp(A, B);

        // make sure avg pooling does what it's spec says it should.
        DLIB_TEST( A.num_samples() == B.num_samples());
        DLIB_TEST( A.k() == B.k());
        DLIB_TEST( A.nr() == 1+(B.nr()-window_height%2)/stride_y);
        DLIB_TEST( A.nc() == 1+(B.nc()-window_width%2)/stride_x);
        for (long s = 0; s < A.num_samples(); ++s)
        {
            for (long k = 0; k < A.k(); ++k)
            {
                for (long r = 0; r < A.nr(); ++r)
                {
                    for (long c = 0; c < A.nc(); ++c)
                    {
                        float expected = mean(subm_clipped(image_plane(B,s,k),
                                            centered_rect(c*stride_x,
                                                        r*stride_y,
                                                        window_width,
                                                        window_height)));
                        float err = abs(image_plane(A,s,k)(r,c) - expected);
                        DLIB_TEST_MSG(err < 1e-5, err << "  " << expected << "  " << image_plane(A,s,k)(r,c));
                    }
                }
            }
        }
    }

Davis King's avatar
Davis King committed
1068
1069
// ----------------------------------------------------------------------------------------

Davis King's avatar
Davis King committed
1070
1071
    void test_layers()
    {
1072
1073
1074
1075
1076
        {
            print_spinner();
            multiply_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
Davis King's avatar
Davis King committed
1077
1078
1079
1080
1081
        {
            print_spinner();
            max_pool_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
1082
1083
1084
1085
1086
        {
            print_spinner();
            avg_pool_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
1087
1088
        {
            print_spinner();
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
            affine_ l(CONV_MODE);
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            affine_ l(FC_MODE);
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            bn_ l(CONV_MODE);
1100
1101
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
Davis King's avatar
Davis King committed
1102
1103
        {
            print_spinner();
1104
            bn_ l(FC_MODE);
Davis King's avatar
Davis King committed
1105
1106
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
Davis King's avatar
Davis King committed
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
        {
            print_spinner();
            con_ l(3,3,3,2,2);
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            con_ l(3,3,3,1,1);
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            con_ l(3,3,2,1,1);
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            con_ l(2,1,1,1,1);
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            fc_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1134
1135
1136
1137
1138
1139
            fc_ l(5,FC_HAS_BIAS);
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            fc_ l(5,FC_NO_BIAS);
Davis King's avatar
Davis King committed
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            relu_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            sig_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            htan_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            softmax_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
    }

1164
1165
1166
1167
1168
// ----------------------------------------------------------------------------------------

    template <typename T> using rcon = max_pool<relu<bn<con<T>>>>;
    std::tuple<max_pool_,relu_,bn_,con_> rcon_ (unsigned long n) 
    {
1169
        return std::make_tuple(max_pool_(2,2,2,2),relu_(),bn_(CONV_MODE),con_(n,5,5));
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
    }

    template <typename T> using rfc = relu<bn<fc<T>>>;
    std::tuple<relu_,bn_,fc_> rfc_ (unsigned long n) 
    {
        return std::make_tuple(relu_(),bn_(),fc_(n));
    }

    void test_tagging(
    )
    {
        typedef loss_multiclass_log<rfc<skip1<rfc<rfc<tag1<rcon<rcon<input<matrix<unsigned char>>>>>>>>>> net_type;

        net_type net(rfc_(10),
            rfc_(84),
            rfc_(120),
            rcon_(16),
            rcon_(6)
        );

1190
1191
        DLIB_TEST(layer<tag1>(net).num_layers == 8);
        DLIB_TEST(layer<skip1>(net).num_layers == 8+3+3);
1192
1193
1194
1195
1196
1197
        DLIB_TEST(&layer<skip1>(net).get_output() == &layer<tag1>(net).get_output());
        DLIB_TEST(&layer<skip1>(net).get_output() != &layer<tag1>(net).subnet().subnet().get_output());
    }

// ----------------------------------------------------------------------------------------

Davis King's avatar
Davis King committed
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
    class dnn_tester : public tester
    {
    public:
        dnn_tester (
        ) :
            tester ("test_dnn",
                "Runs tests on the deep neural network tools.")
        {}

        void perform_test (
        )
        {
1210
            test_tagging();
1211
#ifdef DLIB_USE_CUDA
1212
            test_conv();
1213
            test_more_ops2();
Davis King's avatar
Davis King committed
1214
1215
1216
1217
1218
1219
            test_more_ops(1,1);
            test_more_ops(3,4);
            test_more_ops(4,3);
            test_more_ops(4,1);
            test_more_ops(1,4);
            test_more_ops(10000,4);
1220
1221
            compare_bn_gpu_and_cpu();
            compare_bn_conv_gpu_and_cpu();
1222
            test_add();
Davis King's avatar
Davis King committed
1223
            compare_adam();
1224
#endif
1225
1226
1227
            test_max_pool(1,1,2,3);
            test_max_pool(3,3,1,1);
            test_max_pool(3,3,2,2);
1228
            test_max_pool(2,2,2,2);
1229
            test_max_pool(4,5,3,1);
1230
1231
1232
1233
1234
            test_avg_pool(1,1,2,3);
            test_avg_pool(3,3,1,1);
            test_avg_pool(3,3,2,2);
            test_avg_pool(2,2,2,2);
            test_avg_pool(4,5,3,1);
Davis King's avatar
Davis King committed
1235
            test_tanh();
1236
            test_softmax();
1237
            test_sigmoid();
Davis King's avatar
Davis King committed
1238
1239
            test_batch_normalize();
            test_batch_normalize_conv();
1240
            test_basic_tensor_ops();
Davis King's avatar
Davis King committed
1241
            test_layers();
Davis King's avatar
Davis King committed
1242
1243
1244
1245
1246
1247
        }
    } a;

}