"examples/pytorch/vscode:/vscode.git/clone" did not exist on "fedaa36da50dd39bb97ef33d04dc5921b08e1eb2"
dnn.cpp 6.67 KB
Newer Older
Davis King's avatar
Davis King committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.


#include <sstream>
#include <string>
#include <cstdlib>
#include <ctime>
#include <vector>
#include "../dnn.h"

#include "tester.h"


namespace  
{

    using namespace test;
    using namespace dlib;
    using namespace dlib::cpu;
    using namespace std;

    logger dlog("test.dnn");

// ----------------------------------------------------------------------------------------

    template <typename T>
    float compare_gradients (
        const tensor& t,
        T grad
    )
    {
        float max_error = 0;
        auto p = t.host();
        for (size_t i = 0; i < t.size(); ++i)
        {
            max_error = std::max(max_error, std::abs(p[i]-grad(i)));
        }
        return max_error;
    }

    void test_batch_normalize()
    {
        resizable_tensor src(5,5), gamma(1,5), beta(1,5), dest, means, vars, gradient_input(5,5);
        src = matrix_cast<float>(gaussian_randm(5,5, 0));
        gamma = matrix_cast<float>(gaussian_randm(1,5, 1));
        beta = matrix_cast<float>(gaussian_randm(1,5, 2));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5, 3));

        gamma = 1;
        beta = 0;

        batch_normalize(dest, means, vars, src, gamma, beta);


        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
                batch_normalize(dest, means, vars, src, gamma, beta);
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };
        auto grad_gamma = [&](long idx) {
            auto f = [&](float eps) {
                const float old = gamma.host()[idx];
                gamma.host()[idx] += eps;
                batch_normalize(dest, means, vars, src, gamma, beta);
                float result = dot(gradient_input, dest);
                gamma.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };
        auto grad_beta = [&](long idx) {
            auto f = [&](float eps) {
                const float old = beta.host()[idx];
                beta.host()[idx] += eps;
                batch_normalize(dest, means, vars, src, gamma, beta);
                float result = dot(gradient_input, dest);
                beta.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };

        resizable_tensor src_grad, gamma_grad, beta_grad;
        src_grad.copy_size(src);
        gamma_grad.copy_size(gamma);
        beta_grad.copy_size(beta);
        src_grad = 0;
        gamma_grad = 0;
        beta_grad = 0;

        batch_normalize_gradient(gradient_input, means, vars, src, gamma, src_grad, gamma_grad, beta_grad);

        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

        grad_error = compare_gradients(gamma_grad, grad_gamma);
        dlog << LINFO << "gamma error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

        grad_error = compare_gradients(beta_grad, grad_beta);
        dlog << LINFO << "beta error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);
    }

    void test_batch_normalize_conv()
    {
        resizable_tensor src(5,5,4,4), gamma(1,5), beta(1,5), dest, means, vars, gradient_input(5,5,4,4);
        src = matrix_cast<float>(gaussian_randm(5,5*4*4, 0));
        gamma = matrix_cast<float>(gaussian_randm(1,5, 1));
        beta = matrix_cast<float>(gaussian_randm(1,5, 2));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5*4*4, 3));

        gamma = 1;
        beta = 0;

        batch_normalize_conv(dest, means, vars, src, gamma, beta);


        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
                batch_normalize_conv(dest, means, vars, src, gamma, beta);
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };
        auto grad_gamma = [&](long idx) {
            auto f = [&](float eps) {
                const float old = gamma.host()[idx];
                gamma.host()[idx] += eps;
                batch_normalize_conv(dest, means, vars, src, gamma, beta);
                float result = dot(gradient_input, dest);
                gamma.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };
        auto grad_beta = [&](long idx) {
            auto f = [&](float eps) {
                const float old = beta.host()[idx];
                beta.host()[idx] += eps;
                batch_normalize_conv(dest, means, vars, src, gamma, beta);
                float result = dot(gradient_input, dest);
                beta.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };


        resizable_tensor src_grad, gamma_grad, beta_grad;
        src_grad.copy_size(src);
        gamma_grad.copy_size(gamma);
        beta_grad.copy_size(beta);
        src_grad = 0;
        gamma_grad = 0;
        beta_grad = 0;

        batch_normalize_conv_gradient(gradient_input, means, vars, src, gamma, src_grad, gamma_grad, beta_grad);


        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

        grad_error = compare_gradients(gamma_grad, grad_gamma);
        dlog << LINFO << "gamma error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

        grad_error = compare_gradients(beta_grad, grad_beta);
        dlog << LINFO << "beta error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

    }

// ----------------------------------------------------------------------------------------

    class dnn_tester : public tester
    {
    public:
        dnn_tester (
        ) :
            tester ("test_dnn",
                "Runs tests on the deep neural network tools.")
        {}

        void perform_test (
        )
        {
            test_batch_normalize();
            test_batch_normalize_conv();
        }
    } a;

}