Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
cbce85ec
Commit
cbce85ec
authored
Dec 05, 2015
by
Davis King
Browse files
Added GPU versions of the batch normalization functions.
parent
06534305
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
586 additions
and
12 deletions
+586
-12
dlib/dnn/cpu_dlib.cpp
dlib/dnn/cpu_dlib.cpp
+4
-4
dlib/dnn/cuda_dlib.cu
dlib/dnn/cuda_dlib.cu
+479
-8
dlib/test/dnn.cpp
dlib/test/dnn.cpp
+103
-0
No files found.
dlib/dnn/cpu_dlib.cpp
View file @
cbce85ec
...
@@ -185,7 +185,7 @@ namespace dlib
...
@@ -185,7 +185,7 @@ namespace dlib
for
(
long
i
=
0
;
i
<
num
;
++
i
)
for
(
long
i
=
0
;
i
<
num
;
++
i
)
{
{
auto
actual_var
=
p_invstds
[
i
]
-
p_means
[
i
]
*
p_means
[
i
];
auto
actual_var
=
p_invstds
[
i
]
-
p_means
[
i
]
*
p_means
[
i
];
p_invstds
[
i
]
=
1.0
/
std
::
sqrt
(
actual_var
+
eps
);
p_invstds
[
i
]
=
1.0
f
/
std
::
sqrt
(
actual_var
+
eps
);
}
}
p_src
=
src
.
host
();
p_src
=
src
.
host
();
...
@@ -361,8 +361,8 @@ namespace dlib
...
@@ -361,8 +361,8 @@ namespace dlib
// compute variances
// compute variances
for
(
long
k
=
0
;
k
<
src
.
k
();
++
k
)
for
(
long
k
=
0
;
k
<
src
.
k
();
++
k
)
{
{
auto
actual_var
=
p_invstds
[
k
]
-
p_means
[
k
]
*
p_means
[
k
];
float
actual_var
=
p_invstds
[
k
]
-
p_means
[
k
]
*
p_means
[
k
];
p_invstds
[
k
]
=
1.0
/
std
::
sqrt
(
actual_var
+
eps
);
p_invstds
[
k
]
=
1.0
f
/
std
::
sqrt
(
actual_var
+
eps
);
}
}
p_src
=
src
.
host
();
p_src
=
src
.
host
();
...
@@ -421,7 +421,7 @@ namespace dlib
...
@@ -421,7 +421,7 @@ namespace dlib
{
{
for
(
long
k
=
0
;
k
<
src
.
k
();
++
k
)
for
(
long
k
=
0
;
k
<
src
.
k
();
++
k
)
{
{
const
auto
invstd_pow
=
-
0.5
*
std
::
pow
(
p_invstds
[
k
],
3.0
f
);
const
float
invstd_pow
=
-
0.5
*
std
::
pow
(
p_invstds
[
k
],
3.0
f
);
for
(
long
i
=
0
;
i
<
num
;
++
i
)
for
(
long
i
=
0
;
i
<
num
;
++
i
)
{
{
const
float
x_hat
=
(
*
p_src
-
p_means
[
k
])
*
p_invstds
[
k
];
const
float
x_hat
=
(
*
p_src
-
p_means
[
k
])
*
p_invstds
[
k
];
...
...
dlib/dnn/cuda_dlib.cu
View file @
cbce85ec
...
@@ -163,8 +163,48 @@ namespace dlib
...
@@ -163,8 +163,48 @@ namespace dlib
}
}
}
}
// -----------------------------------------------------------------------------------
// -----------------------------------------------------------------------------------
// -----------------------------------------------------------------------------------
__global__
void
_cuda_batch_normalize
(
float
*
dest
,
float
*
means
,
float
*
invstds
,
const
float
*
src
,
const
float
*
gamma
,
const
float
*
beta
,
long
num
,
long
num_samples
)
{
const
float
eps
=
0.00001
;
const
float
invnum
=
1.0
f
/
num_samples
;
for
(
auto
i
:
grid_stride_range
(
0
,
num
))
{
means
[
i
]
=
0
;
invstds
[
i
]
=
0
;
for
(
long
n
=
0
;
n
<
num_samples
;
++
n
)
{
float
val
=
src
[
n
*
num
+
i
];
means
[
i
]
+=
val
;
invstds
[
i
]
+=
val
*
val
;
}
means
[
i
]
*=
invnum
;
invstds
[
i
]
*=
invnum
;
float
actual_var
=
invstds
[
i
]
-
means
[
i
]
*
means
[
i
];
invstds
[
i
]
=
1.0
f
/::
sqrt
(
actual_var
+
eps
);
for
(
long
n
=
0
;
n
<
num_samples
;
++
n
)
{
long
idx
=
n
*
num
+
i
;
float
temp
=
(
src
[
idx
]
-
means
[
i
])
*
invstds
[
i
];
dest
[
idx
]
=
temp
*
gamma
[
i
]
+
beta
[
i
];
}
}
}
void
batch_normalize
(
void
batch_normalize
(
resizable_tensor
&
dest
,
resizable_tensor
&
dest
,
resizable_tensor
&
means
,
resizable_tensor
&
means
,
...
@@ -174,8 +214,90 @@ namespace dlib
...
@@ -174,8 +214,90 @@ namespace dlib
const
tensor
&
beta
const
tensor
&
beta
)
)
{
{
// TODO
DLIB_CASSERT
(
DLIB_CASSERT
(
false
,
""
);
src
.
num_samples
()
>
1
&&
gamma
.
num_samples
()
==
1
&&
beta
.
num_samples
()
==
1
&&
gamma
.
nr
()
==
beta
.
nr
()
&&
beta
.
nr
()
==
src
.
nr
()
&&
gamma
.
nc
()
==
beta
.
nc
()
&&
beta
.
nc
()
==
src
.
nc
()
&&
gamma
.
k
()
==
beta
.
k
()
&&
beta
.
k
()
==
src
.
k
(),
"
\n
gamma.num_samples(): "
<<
gamma
.
num_samples
()
<<
"
\n
gamma.k(): "
<<
gamma
.
k
()
<<
"
\n
gamma.nr(): "
<<
gamma
.
nr
()
<<
"
\n
gamma.nc(): "
<<
gamma
.
nc
()
<<
"
\n
beta.num_samples(): "
<<
beta
.
num_samples
()
<<
"
\n
beta.k(): "
<<
beta
.
k
()
<<
"
\n
beta.nr(): "
<<
beta
.
nr
()
<<
"
\n
beta.nc(): "
<<
beta
.
nc
()
<<
"
\n
src.k(): "
<<
src
.
k
()
<<
"
\n
src.nr(): "
<<
src
.
nr
()
<<
"
\n
src.nc(): "
<<
src
.
nc
()
);
dest
.
copy_size
(
src
);
means
.
set_size
(
1
,
src
.
k
(),
src
.
nr
(),
src
.
nc
());
invstds
.
set_size
(
1
,
src
.
k
(),
src
.
nr
(),
src
.
nc
());
_cuda_batch_normalize
<<<
512
,
512
>>>
(
dest
.
device
(),
means
.
device
(),
invstds
.
device
(),
src
.
device
(),
gamma
.
device
(),
beta
.
device
(),
means
.
size
(),
src
.
num_samples
());
}
__global__
void
_cuda_batch_normalize_gradient
(
const
float
*
grad
,
const
float
*
means
,
const
float
*
invstds
,
const
float
*
src
,
const
float
*
gamma
,
float
*
src_grad
,
float
*
gamma_grad
,
float
*
beta_grad
,
float
*
dmeans
,
float
*
dvars
,
long
num
,
long
num_samples
)
{
const
float
invnum
=
1.0
f
/
num_samples
;
for
(
auto
i
:
grid_stride_range
(
0
,
num
))
{
dvars
[
i
]
=
0
;
dmeans
[
i
]
=
0
;
for
(
long
n
=
0
;
n
<
num_samples
;
++
n
)
{
const
long
idx
=
n
*
num
+
i
;
const
float
x_hat
=
(
src
[
idx
]
-
means
[
i
])
*
invstds
[
i
];
beta_grad
[
i
]
+=
grad
[
idx
];
gamma_grad
[
i
]
+=
grad
[
idx
]
*
x_hat
;
const
float
dx
=
grad
[
idx
]
*
gamma
[
i
];
dvars
[
i
]
+=
dx
*
(
src
[
idx
]
-
means
[
i
])
*-
0.5
*::
pow
(
invstds
[
i
],
3.0
f
);
}
for
(
long
n
=
0
;
n
<
num_samples
;
++
n
)
{
const
long
idx
=
n
*
num
+
i
;
const
float
dx
=
grad
[
idx
]
*
gamma
[
i
];
dmeans
[
i
]
+=
dx
*-
invstds
[
i
]
+
dvars
[
i
]
*
-
2
*
(
src
[
idx
]
-
means
[
i
])
*
invnum
;
}
for
(
long
n
=
0
;
n
<
num_samples
;
++
n
)
{
const
long
idx
=
n
*
num
+
i
;
const
float
dx
=
grad
[
idx
]
*
gamma
[
i
];
src_grad
[
idx
]
+=
dx
*
invstds
[
i
]
+
dvars
[
i
]
*
2
*
(
src
[
idx
]
-
means
[
i
])
*
invnum
+
dmeans
[
i
]
*
invnum
;
}
}
}
}
void
batch_normalize_gradient
::
operator
()
(
void
batch_normalize_gradient
::
operator
()
(
...
@@ -189,12 +311,141 @@ namespace dlib
...
@@ -189,12 +311,141 @@ namespace dlib
tensor
&
beta_grad
tensor
&
beta_grad
)
)
{
{
// TODO
const
long
num
=
src
.
k
()
*
src
.
nr
()
*
src
.
nc
();
DLIB_CASSERT
(
false
,
""
);
DLIB_CASSERT
(
num
==
means
.
size
(),
""
);
DLIB_CASSERT
(
num
==
invstds
.
size
(),
""
);
DLIB_CASSERT
(
num
==
gamma
.
size
(),
""
);
DLIB_CASSERT
(
num
==
gamma_grad
.
size
(),
""
);
DLIB_CASSERT
(
num
==
beta_grad
.
size
(),
""
);
DLIB_CASSERT
(
have_same_dimensions
(
gradient_input
,
src
),
""
);
DLIB_CASSERT
(
have_same_dimensions
(
gradient_input
,
src_grad
),
""
);
dvars
.
copy_size
(
invstds
);
dmeans
.
copy_size
(
means
);
_cuda_batch_normalize_gradient
<<<
512
,
512
>>>
(
gradient_input
.
device
(),
means
.
device
(),
invstds
.
device
(),
src
.
device
(),
gamma
.
device
(),
src_grad
.
device
(),
gamma_grad
.
device
(),
beta_grad
.
device
(),
dmeans
.
device
(),
dvars
.
device
(),
num
,
src
.
num_samples
());
}
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// This function is from the article:
// http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
__inline__
__device__
float
warp_reduce_sum
(
float
val
)
{
for
(
int
offset
=
warpSize
/
2
;
offset
>
0
;
offset
/=
2
)
val
+=
__shfl_down
(
val
,
offset
);
return
val
;
}
__inline__
__device__
bool
is_first_thread_in_warp
()
{
return
(
threadIdx
.
x
&
(
warpSize
-
1
))
==
0
;
}
__inline__
__device__
void
warp_reduce_atomic_add
(
float
&
out
,
float
val
)
/*!
ensures
- Atomically adds all the val variables in the current warp to out.
See this page for an extended discussion:
http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
!*/
{
val
=
warp_reduce_sum
(
val
);
if
(
is_first_thread_in_warp
())
atomicAdd
(
&
out
,
val
);
}
__global__
void
_cuda_batch_normalize_conv1
(
float
*
dest
,
float
*
means
,
float
*
invstds
,
const
float
*
src
,
const
float
*
gamma
,
const
float
*
beta
,
long
num_k
,
long
num_samples
,
long
num_pixels
)
{
for
(
long
k
=
0
;
k
<
num_k
;
++
k
)
{
float
mval
=
0
;
float
ival
=
0
;
// Now do two parallel reductions to compute the first two moments of the
// data.
for
(
auto
j
:
grid_stride_range
(
0
,
num_samples
*
num_pixels
))
{
long
i
=
j
%
num_pixels
;
long
n
=
j
/
num_pixels
;
float
val
=
src
[
n
*
num_k
*
num_pixels
+
k
*
num_pixels
+
i
];
mval
+=
val
;
ival
+=
val
*
val
;
}
warp_reduce_atomic_add
(
means
[
k
],
mval
);
warp_reduce_atomic_add
(
invstds
[
k
],
ival
);
}
}
__global__
void
_cuda_batch_normalize_conv2
(
float
*
means
,
float
*
invstds
,
long
num_k
,
long
num_samples
,
long
num_pixels
)
{
const
float
scale
=
1.0
f
/
(
num_samples
*
num_pixels
);
const
float
eps
=
0.00001
;
for
(
auto
k
:
grid_stride_range
(
0
,
num_k
))
{
means
[
k
]
*=
scale
;
auto
actual_var
=
scale
*
invstds
[
k
]
-
means
[
k
]
*
means
[
k
];
invstds
[
k
]
=
1.0
f
/::
sqrt
(
actual_var
+
eps
);
}
}
__global__
void
_cuda_batch_normalize_conv3
(
float
*
dest
,
float
*
means
,
float
*
invstds
,
const
float
*
src
,
const
float
*
gamma
,
const
float
*
beta
,
long
num_k
,
long
num_samples
,
long
num_pixels
)
{
for
(
long
k
=
0
;
k
<
num_k
;
++
k
)
{
for
(
auto
j
:
grid_stride_range
(
0
,
num_samples
*
num_pixels
))
{
long
i
=
j
%
num_pixels
;
long
n
=
j
/
num_pixels
;
i
=
n
*
num_k
*
num_pixels
+
k
*
num_pixels
+
i
;
dest
[
i
]
=
(
src
[
i
]
-
means
[
k
])
*
invstds
[
k
];
dest
[
i
]
=
dest
[
i
]
*
gamma
[
k
]
+
beta
[
k
];
}
}
}
void
batch_normalize_conv
(
void
batch_normalize_conv
(
resizable_tensor
&
dest
,
resizable_tensor
&
dest
,
resizable_tensor
&
means
,
resizable_tensor
&
means
,
...
@@ -204,8 +455,172 @@ namespace dlib
...
@@ -204,8 +455,172 @@ namespace dlib
const
tensor
&
beta
const
tensor
&
beta
)
)
{
{
// TODO
DLIB_CASSERT
(
DLIB_CASSERT
(
false
,
""
);
src
.
num_samples
()
>
1
&&
gamma
.
num_samples
()
==
1
&&
beta
.
num_samples
()
==
1
&&
gamma
.
nr
()
==
1
&&
beta
.
nr
()
==
1
&&
gamma
.
nc
()
==
1
&&
beta
.
nc
()
==
1
&&
gamma
.
k
()
==
beta
.
k
()
&&
beta
.
k
()
==
src
.
k
(),
"
\n
gamma.num_samples(): "
<<
gamma
.
num_samples
()
<<
"
\n
gamma.k(): "
<<
gamma
.
k
()
<<
"
\n
gamma.nr(): "
<<
gamma
.
nr
()
<<
"
\n
gamma.nc(): "
<<
gamma
.
nc
()
<<
"
\n
beta.num_samples(): "
<<
beta
.
num_samples
()
<<
"
\n
beta.k(): "
<<
beta
.
k
()
<<
"
\n
beta.nr(): "
<<
beta
.
nr
()
<<
"
\n
beta.nc(): "
<<
beta
.
nc
()
<<
"
\n
src.k(): "
<<
src
.
k
()
<<
"
\n
src.nr(): "
<<
src
.
nr
()
<<
"
\n
src.nc(): "
<<
src
.
nc
()
);
dest
.
copy_size
(
src
);
means
.
set_size
(
1
,
src
.
k
());
invstds
.
set_size
(
1
,
src
.
k
());
means
=
0
;
invstds
=
0
;
_cuda_batch_normalize_conv1
<<<
512
,
512
>>>
(
dest
.
device
(),
means
.
device
(),
invstds
.
device
(),
src
.
device
(),
gamma
.
device
(),
beta
.
device
(),
src
.
k
(),
src
.
num_samples
(),
src
.
nr
()
*
src
.
nc
());
_cuda_batch_normalize_conv2
<<<
512
,
512
>>>
(
means
.
device
(),
invstds
.
device
(),
src
.
k
(),
src
.
num_samples
(),
src
.
nr
()
*
src
.
nc
());
_cuda_batch_normalize_conv3
<<<
512
,
512
>>>
(
dest
.
device
(),
means
.
device
(),
invstds
.
device
(),
src
.
device
(),
gamma
.
device
(),
beta
.
device
(),
src
.
k
(),
src
.
num_samples
(),
src
.
nr
()
*
src
.
nc
());
}
__global__
void
_cuda_batch_normalize_conv_gradient1
(
const
float
*
grad
,
const
float
*
means
,
const
float
*
invstds
,
const
float
*
src
,
const
float
*
gamma
,
float
*
src_grad
,
float
*
gamma_grad
,
float
*
beta_grad
,
float
*
dmeans
,
float
*
dvars
,
long
num_k
,
long
num_samples
,
long
num_pixels
)
{
for
(
long
k
=
0
;
k
<
num_k
;
++
k
)
{
float
bval
=
0
;
float
gval
=
0
;
float
dval
=
0
;
const
float
invstd_pow
=
-
0.5
f
*::
pow
(
invstds
[
k
],
3.0
f
);
// Now do three parallel reductions
for
(
auto
j
:
grid_stride_range
(
0
,
num_samples
*
num_pixels
))
{
long
i
=
j
%
num_pixels
;
long
n
=
j
/
num_pixels
;
long
idx
=
n
*
num_k
*
num_pixels
+
k
*
num_pixels
+
i
;
const
float
x_hat
=
(
src
[
idx
]
-
means
[
k
])
*
invstds
[
k
];
bval
+=
grad
[
idx
];
gval
+=
grad
[
idx
]
*
x_hat
;
const
float
dx
=
grad
[
idx
]
*
gamma
[
k
];
dval
+=
dx
*
(
src
[
idx
]
-
means
[
k
])
*
invstd_pow
;
}
warp_reduce_atomic_add
(
beta_grad
[
k
],
bval
);
warp_reduce_atomic_add
(
gamma_grad
[
k
],
gval
);
warp_reduce_atomic_add
(
dvars
[
k
],
dval
);
}
}
__global__
void
_cuda_batch_normalize_conv_gradient2
(
const
float
*
grad
,
const
float
*
means
,
const
float
*
invstds
,
const
float
*
src
,
const
float
*
gamma
,
float
*
src_grad
,
float
*
gamma_grad
,
float
*
beta_grad
,
float
*
dmeans
,
float
*
dvars
,
long
num_k
,
long
num_samples
,
long
num_pixels
)
{
const
float
invnum
=
1.0
f
/
(
num_samples
*
num_pixels
);
for
(
long
k
=
0
;
k
<
num_k
;
++
k
)
{
float
mval
=
0
;
// Now do a parallel reduction
for
(
auto
j
:
grid_stride_range
(
0
,
num_samples
*
num_pixels
))
{
long
i
=
j
%
num_pixels
;
long
n
=
j
/
num_pixels
;
long
idx
=
n
*
num_k
*
num_pixels
+
k
*
num_pixels
+
i
;
const
float
dx
=
grad
[
idx
]
*
gamma
[
k
];
mval
+=
-
dx
*
invstds
[
k
]
+
dvars
[
k
]
*
-
2
*
(
src
[
idx
]
-
means
[
k
])
*
invnum
;
}
warp_reduce_atomic_add
(
dmeans
[
k
],
mval
);
}
}
__global__
void
_cuda_batch_normalize_conv_gradient3
(
const
float
*
grad
,
const
float
*
means
,
const
float
*
invstds
,
const
float
*
src
,
const
float
*
gamma
,
float
*
src_grad
,
float
*
gamma_grad
,
float
*
beta_grad
,
float
*
dmeans
,
float
*
dvars
,
long
num_k
,
long
num_samples
,
long
num_pixels
)
{
const
float
invnum
=
1.0
f
/
(
num_samples
*
num_pixels
);
for
(
long
k
=
0
;
k
<
num_k
;
++
k
)
{
for
(
auto
j
:
grid_stride_range
(
0
,
num_samples
*
num_pixels
))
{
long
i
=
j
%
num_pixels
;
long
n
=
j
/
num_pixels
;
long
idx
=
n
*
num_k
*
num_pixels
+
k
*
num_pixels
+
i
;
const
float
dx
=
grad
[
idx
]
*
gamma
[
k
];
src_grad
[
idx
]
+=
dx
*
invstds
[
k
]
+
dvars
[
k
]
*
2
*
(
src
[
idx
]
-
means
[
k
])
*
invnum
+
dmeans
[
k
]
*
invnum
;
}
}
}
}
void
batch_normalize_conv_gradient
::
operator
()
(
void
batch_normalize_conv_gradient
::
operator
()
(
...
@@ -219,8 +634,64 @@ namespace dlib
...
@@ -219,8 +634,64 @@ namespace dlib
tensor
&
beta_grad
tensor
&
beta_grad
)
)
{
{
// TODO
DLIB_CASSERT
(
src
.
k
()
==
means
.
size
(),
""
);
DLIB_CASSERT
(
false
,
""
);
DLIB_CASSERT
(
src
.
k
()
==
invstds
.
size
(),
""
);
DLIB_CASSERT
(
src
.
k
()
==
gamma
.
size
(),
""
);
DLIB_CASSERT
(
src
.
k
()
==
gamma_grad
.
size
(),
""
);
DLIB_CASSERT
(
src
.
k
()
==
beta_grad
.
size
(),
""
);
DLIB_CASSERT
(
have_same_dimensions
(
gradient_input
,
src
),
""
);
DLIB_CASSERT
(
have_same_dimensions
(
gradient_input
,
src_grad
),
""
);
dvars
.
copy_size
(
invstds
);
dmeans
.
copy_size
(
means
);
dvars
=
0
;
dmeans
=
0
;
_cuda_batch_normalize_conv_gradient1
<<<
512
,
512
>>>
(
gradient_input
.
device
(),
means
.
device
(),
invstds
.
device
(),
src
.
device
(),
gamma
.
device
(),
src_grad
.
device
(),
gamma_grad
.
device
(),
beta_grad
.
device
(),
dmeans
.
device
(),
dvars
.
device
(),
src
.
k
(),
src
.
num_samples
(),
src
.
nr
()
*
src
.
nc
());
_cuda_batch_normalize_conv_gradient2
<<<
512
,
512
>>>
(
gradient_input
.
device
(),
means
.
device
(),
invstds
.
device
(),
src
.
device
(),
gamma
.
device
(),
src_grad
.
device
(),
gamma_grad
.
device
(),
beta_grad
.
device
(),
dmeans
.
device
(),
dvars
.
device
(),
src
.
k
(),
src
.
num_samples
(),
src
.
nr
()
*
src
.
nc
());
_cuda_batch_normalize_conv_gradient3
<<<
512
,
512
>>>
(
gradient_input
.
device
(),
means
.
device
(),
invstds
.
device
(),
src
.
device
(),
gamma
.
device
(),
src_grad
.
device
(),
gamma_grad
.
device
(),
beta_grad
.
device
(),
dmeans
.
device
(),
dvars
.
device
(),
src
.
k
(),
src
.
num_samples
(),
src
.
nr
()
*
src
.
nc
());
}
}
// -----------------------------------------------------------------------------------
// -----------------------------------------------------------------------------------
...
...
dlib/test/dnn.cpp
View file @
cbce85ec
...
@@ -460,6 +460,107 @@ namespace
...
@@ -460,6 +460,107 @@ namespace
}
}
#endif
#endif
// ----------------------------------------------------------------------------------------
void
compare_bn_gpu_and_cpu
()
{
print_spinner
();
resizable_tensor
dest
,
dest2
;
resizable_tensor
means
,
means2
;
resizable_tensor
invstds
,
invstds2
;
resizable_tensor
src
(
64
,
20
,
100
,
100
);
resizable_tensor
gamma
(
1
,
20
,
100
,
100
);
resizable_tensor
beta
(
1
,
20
,
100
,
100
);
gamma
=
2
;
beta
=
3
;
tt
::
tensor_rand
rnd
;
rnd
.
fill_uniform
(
src
);
cpu
::
batch_normalize
(
dest
,
means
,
invstds
,
src
,
gamma
,
beta
);
cuda
::
batch_normalize
(
dest2
,
means2
,
invstds2
,
src
,
gamma
,
beta
);
dlog
<<
LINFO
<<
"dest error: "
<<
max
(
abs
(
mat
(
dest
)
-
mat
(
dest2
)));
dlog
<<
LINFO
<<
"means error: "
<<
max
(
abs
(
mat
(
means
)
-
mat
(
means2
)));
dlog
<<
LINFO
<<
"invstds error: "
<<
max
(
abs
(
mat
(
invstds
)
-
mat
(
invstds2
)));
DLIB_TEST
(
max
(
abs
(
mat
(
dest
)
-
mat
(
dest2
)))
<
1e-5
);
DLIB_TEST
(
max
(
abs
(
mat
(
means
)
-
mat
(
means2
)))
<
1e-5
);
DLIB_TEST
(
max
(
abs
(
mat
(
invstds
)
-
mat
(
invstds2
)))
<
1e-5
);
// now check that the gradients match as well
resizable_tensor
gradient_input
;
resizable_tensor
src_grad
,
gamma_grad
,
beta_grad
;
resizable_tensor
src_grad2
,
gamma_grad2
,
beta_grad2
;
gradient_input
.
copy_size
(
dest
);
src_grad
.
copy_size
(
src
);
src_grad
=
0
;
src_grad2
=
src_grad
;
gamma_grad
.
copy_size
(
gamma
);
gamma_grad
=
0
;
gamma_grad2
=
gamma_grad
;
beta_grad
.
copy_size
(
beta
);
beta_grad
=
0
;
beta_grad2
=
beta_grad
;
rnd
.
fill_uniform
(
gradient_input
);
cpu
::
batch_normalize_gradient
cpu_bng
;
cpu_bng
(
gradient_input
,
means
,
invstds
,
src
,
gamma
,
src_grad
,
gamma_grad
,
beta_grad
);
cuda
::
batch_normalize_gradient
cuda_bng
;
cuda_bng
(
gradient_input
,
means
,
invstds
,
src
,
gamma
,
src_grad2
,
gamma_grad2
,
beta_grad2
);
dlog
<<
LINFO
<<
"src_grad error: "
<<
max
(
abs
(
mat
(
src_grad
)
-
mat
(
src_grad2
)));
dlog
<<
LINFO
<<
"gamma_grad error: "
<<
max
(
abs
(
mat
(
gamma_grad
)
-
mat
(
gamma_grad2
)));
dlog
<<
LINFO
<<
"beta_grad error: "
<<
max
(
abs
(
mat
(
beta_grad
)
-
mat
(
beta_grad2
)));
DLIB_TEST
(
max
(
abs
(
mat
(
src_grad
)
-
mat
(
src_grad2
)))
<
1e-5
);
DLIB_TEST
(
max
(
abs
(
mat
(
gamma_grad
)
-
mat
(
gamma_grad2
)))
<
1e-5
);
DLIB_TEST
(
max
(
abs
(
mat
(
beta_grad
)
-
mat
(
beta_grad2
)))
<
1e-5
);
}
void
compare_bn_conv_gpu_and_cpu
()
{
print_spinner
();
resizable_tensor
dest
,
dest2
;
resizable_tensor
means
,
means2
;
resizable_tensor
invstds
,
invstds2
;
resizable_tensor
src
(
2
,
8
,
10
,
9
);
resizable_tensor
gamma
(
1
,
8
);
resizable_tensor
beta
(
1
,
8
);
gamma
=
2
;
beta
=
3
;
tt
::
tensor_rand
rnd
;
rnd
.
fill_uniform
(
src
);
cpu
::
batch_normalize_conv
(
dest
,
means
,
invstds
,
src
,
gamma
,
beta
);
cuda
::
batch_normalize_conv
(
dest2
,
means2
,
invstds2
,
src
,
gamma
,
beta
);
dlog
<<
LINFO
<<
"dest error: "
<<
max
(
abs
(
mat
(
dest
)
-
mat
(
dest2
)));
dlog
<<
LINFO
<<
"means error: "
<<
max
(
abs
(
mat
(
means
)
-
mat
(
means2
)));
dlog
<<
LINFO
<<
"invstds error: "
<<
max
(
abs
(
mat
(
invstds
)
-
mat
(
invstds2
)));
DLIB_TEST
(
max
(
abs
(
mat
(
dest
)
-
mat
(
dest2
)))
<
1e-4
);
DLIB_TEST
(
max
(
abs
(
mat
(
means
)
-
mat
(
means2
)))
<
1e-4
);
DLIB_TEST
(
max
(
abs
(
mat
(
invstds
)
-
mat
(
invstds2
)))
<
1e-4
);
resizable_tensor
gradient_input
;
resizable_tensor
src_grad
,
gamma_grad
,
beta_grad
;
resizable_tensor
src_grad2
,
gamma_grad2
,
beta_grad2
;
gradient_input
.
copy_size
(
dest
);
src_grad
.
copy_size
(
src
);
src_grad
=
0
;
src_grad2
=
src_grad
;
gamma_grad
.
copy_size
(
gamma
);
gamma_grad
=
0
;
gamma_grad2
=
gamma_grad
;
beta_grad
.
copy_size
(
beta
);
beta_grad
=
0
;
beta_grad2
=
beta_grad
;
rnd
.
fill_uniform
(
gradient_input
);
cpu
::
batch_normalize_conv_gradient
cpu_bng
;
cpu_bng
(
gradient_input
,
means
,
invstds
,
src
,
gamma
,
src_grad
,
gamma_grad
,
beta_grad
);
cuda
::
batch_normalize_conv_gradient
cuda_bng
;
cuda_bng
(
gradient_input
,
means
,
invstds
,
src
,
gamma
,
src_grad2
,
gamma_grad2
,
beta_grad2
);
dlog
<<
LINFO
<<
"src_grad error: "
<<
max
(
abs
(
mat
(
src_grad
)
-
mat
(
src_grad2
)));
dlog
<<
LINFO
<<
"gamma_grad error: "
<<
max
(
abs
(
mat
(
gamma_grad
)
-
mat
(
gamma_grad2
)));
dlog
<<
LINFO
<<
"beta_grad error: "
<<
max
(
abs
(
mat
(
beta_grad
)
-
mat
(
beta_grad2
)));
DLIB_TEST
(
max
(
abs
(
mat
(
src_grad
)
-
mat
(
src_grad2
)))
<
1e-4
);
DLIB_TEST
(
max
(
abs
(
mat
(
gamma_grad
)
-
mat
(
gamma_grad2
)))
<
1e-4
);
DLIB_TEST
(
max
(
abs
(
mat
(
beta_grad
)
-
mat
(
beta_grad2
)))
<
1e-4
);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
class
dnn_tester
:
public
tester
class
dnn_tester
:
public
tester
...
@@ -488,6 +589,8 @@ namespace
...
@@ -488,6 +589,8 @@ namespace
test_batch_normalize
();
test_batch_normalize
();
test_batch_normalize_conv
();
test_batch_normalize_conv
();
test_basic_tensor_ops
();
test_basic_tensor_ops
();
compare_bn_gpu_and_cpu
();
compare_bn_conv_gpu_and_cpu
();
}
}
}
a
;
}
a
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment