"docs/git@developer.sourcefind.cn:OpenDAS/vision.git" did not exist on "2e9cdd19bf100b8ecd9f6b6d6ee284dfe9d4be41"
object_detection.cpp 18.6 KB
Newer Older
1
2
3
4
5
6
7
8
// Copyright (C) 2014  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.

#include <dlib/python.h>
#include <dlib/matrix.h>
#include <boost/python/args.hpp>
#include <dlib/geometry.h>
#include <dlib/image_processing/frontal_face_detector.h>
9
#include "indexing.h"
Patrick Snape's avatar
Patrick Snape committed
10
#include "simple_object_detector.h"
Patrick Snape's avatar
Patrick Snape committed
11
#include "conversion.h"
12
13
14
15
16
17
18

using namespace dlib;
using namespace std;
using namespace boost::python;

// ----------------------------------------------------------------------------------------

Patrick Snape's avatar
Patrick Snape committed
19
20
21
22
23
24
25
26
27
string print_simple_test_results(const simple_test_results& r)
{
    std::ostringstream sout;
    sout << "precision: "<<r.precision << ", recall: "<< r.recall << ", average precision: " << r.average_precision;
    return sout.str();
}

// ----------------------------------------------------------------------------------------

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
long left(const rectangle& r) { return r.left(); }
long top(const rectangle& r) { return r.top(); }
long right(const rectangle& r) { return r.right(); }
long bottom(const rectangle& r) { return r.bottom(); }
long width(const rectangle& r) { return r.width(); }
long height(const rectangle& r) { return r.height(); }

string print_rectangle_str(const rectangle& r)
{
    std::ostringstream sout;
    sout << r;
    return sout.str();
}

string print_rectangle_repr(const rectangle& r)
{
    std::ostringstream sout;
    sout << "rectangle(" << r.left() << "," << r.top() << "," << r.right() << "," << r.bottom() << ")";
    return sout.str();
}

// ----------------------------------------------------------------------------------------

Patrick Snape's avatar
Patrick Snape committed
51
52
std::vector<rectangle> run_detector_with_upscale (
    simple_object_detector& detector,
53
54
55
56
57
58
59
60
    object img,
    const unsigned int upsampling_amount
)
{
    pyramid_down<2> pyr;

    if (is_gray_python_image(img))
    {
61
        array2d<unsigned char> temp;
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        if (upsampling_amount == 0)
        {
            return detector(numpy_gray_image(img));
        }
        else
        {
            pyramid_up(numpy_gray_image(img), temp, pyr);
            unsigned int levels = upsampling_amount-1;
            while (levels > 0)
            {
                levels--;
                pyramid_up(temp);
            }

            std::vector<rectangle> res = detector(temp);
            for (unsigned long i = 0; i < res.size(); ++i)
                res[i] = pyr.rect_down(res[i], upsampling_amount);
            return res;
        }
    }
    else if (is_rgb_python_image(img))
    {
84
        array2d<rgb_pixel> temp;
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        if (upsampling_amount == 0)
        {
            return detector(numpy_rgb_image(img));
        }
        else
        {
            pyramid_up(numpy_rgb_image(img), temp, pyr);
            unsigned int levels = upsampling_amount-1;
            while (levels > 0)
            {
                levels--;
                pyramid_up(temp);
            }

            std::vector<rectangle> res = detector(temp);
            for (unsigned long i = 0; i < res.size(); ++i)
                res[i] = pyr.rect_down(res[i], upsampling_amount);
            return res;
        }
    }
    else
    {
        throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
    }
}

// ----------------------------------------------------------------------------------------

113
114
115
116
117
118
119
120
121
122
123
124
125
126
inline void train_simple_object_detector_on_images_py (
    const object& pyimages,
    const object& pyboxes,
    const std::string& detector_output_filename,
    const simple_object_detector_training_options& options 
)
{
    const unsigned long num_images = len(pyimages);
    if (num_images != len(pyboxes))
        throw dlib::error("The length of the boxes list must match the length of the images list.");

    // We never have any ignore boxes for this version of the API.
    std::vector<std::vector<rectangle> > ignore(num_images), boxes(num_images);
    dlib::array<array2d<rgb_pixel> > images(num_images);
Patrick Snape's avatar
Patrick Snape committed
127
    images_and_nested_params_to_dlib(pyimages, pyboxes, images, boxes);
128
129
130
131

    train_simple_object_detector_on_images("", images, boxes, ignore, detector_output_filename, options);
}

132
133
134
135
136
137
138
139
140
141
142
143
144
inline simple_test_results test_simple_object_detector_with_images_py (
        const object& pyimages,
        const object& pyboxes,
        const std::string& detector_filename
)
{
    const unsigned long num_images = len(pyimages);
    if (num_images != len(pyboxes))
        throw dlib::error("The length of the boxes list must match the length of the images list.");

    // We never have any ignore boxes for this version of the API.
    std::vector<std::vector<rectangle> > ignore(num_images), boxes(num_images);
    dlib::array<array2d<rgb_pixel> > images(num_images);
Patrick Snape's avatar
Patrick Snape committed
145
    images_and_nested_params_to_dlib(pyimages, pyboxes, images, boxes);
146
147
148
149

    return test_simple_object_detector_with_images(images, boxes, ignore, detector_filename);
}

150
151
152
153
154
155
// ----------------------------------------------------------------------------------------

void bind_object_detection()
{
    using boost::python::arg;

Davis King's avatar
Davis King committed
156
157
    class_<simple_object_detector_training_options>("simple_object_detector_training_options", 
        "This object is a container for the options to the train_simple_object_detector() routine.")
158
        .add_property("be_verbose", &simple_object_detector_training_options::be_verbose, 
Davis King's avatar
Davis King committed
159
160
161
                                    &simple_object_detector_training_options::be_verbose,
                                    "If true, train_simple_object_detector() will print out a lot of information to the screen while training."
                                    )
162
        .add_property("add_left_right_image_flips", &simple_object_detector_training_options::add_left_right_image_flips, 
Davis King's avatar
Davis King committed
163
164
165
166
167
168
169
170
171
172
                                                    &simple_object_detector_training_options::add_left_right_image_flips,
"if true, train_simple_object_detector() will assume the objects are \n\
left/right symmetric and add in left right flips of the training \n\
images.  This doubles the size of the training dataset." 
                    /*!
                      if true, train_simple_object_detector() will assume the objects are
                      left/right symmetric and add in left right flips of the training
                      images.  This doubles the size of the training dataset.
                    !*/
                                                    )
173
        .add_property("detection_window_size", &simple_object_detector_training_options::detection_window_size,
Davis King's avatar
Davis King committed
174
175
                                               &simple_object_detector_training_options::detection_window_size,
                                               "The sliding window used will have about this many pixels inside it.")
176
        .add_property("C", &simple_object_detector_training_options::C,
Davis King's avatar
Davis King committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
                           &simple_object_detector_training_options::C,
"C is the usual SVM C regularization parameter.  So it is passed to \n\
structural_object_detection_trainer::set_c().  Larger values of C \n\
will encourage the trainer to fit the data better but might lead to \n\
overfitting.  Therefore, you must determine the proper setting of \n\
this parameter experimentally." 
                    /*!
                      C is the usual SVM C regularization parameter.  So it is passed to
                      structural_object_detection_trainer::set_c().  Larger values of C
                      will encourage the trainer to fit the data better but might lead to
                      overfitting.  Therefore, you must determine the proper setting of
                      this parameter experimentally.
                    !*/
                           )
191
192
193
194
195
196
197
198
199
        .add_property("epsilon", &simple_object_detector_training_options::epsilon,
                                 &simple_object_detector_training_options::epsilon,
"epsilon is the stopping epsilon.  Smaller values make the trainer's \n\
solver more accurate but might take longer to train." 
                    /*!
                      epsilon is the stopping epsilon.  Smaller values make the trainer's
                      solver more accurate but might take longer to train.
                    !*/
                           )
200
        .add_property("num_threads", &simple_object_detector_training_options::num_threads,
Davis King's avatar
Davis King committed
201
202
203
204
205
206
207
208
209
210
211
212
213
                                     &simple_object_detector_training_options::num_threads,
"train_simple_object_detector() will use this many threads of \n\
execution.  Set this to the number of CPU cores on your machine to \n\
obtain the fastest training speed." 
                    /*!
                      train_simple_object_detector() will use this many threads of
                      execution.  Set this to the number of CPU cores on your machine to
                      obtain the fastest training speed.
                    !*/
                                     );



214
215
216
217
218
219
220
221

    class_<simple_test_results>("simple_test_results")
        .add_property("precision", &simple_test_results::precision)
        .add_property("recall", &simple_test_results::recall)
        .add_property("average_precision", &simple_test_results::average_precision)
        .def("__str__", &::print_simple_test_results);


222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    {
    typedef rectangle type;
    class_<type>("rectangle", "This object represents a rectangular area of an image.")
        .def(init<long,long,long,long>( (arg("left"),arg("top"),arg("right"),arg("bottom")) ))
        .def("left",   &::left)
        .def("top",    &::top)
        .def("right",  &::right)
        .def("bottom", &::bottom)
        .def("width",  &::width)
        .def("height", &::height)
        .def("__str__", &::print_rectangle_str)
        .def("__repr__", &::print_rectangle_repr)
        .def_pickle(serialize_pickle<type>());
    }

    def("get_frontal_face_detector", get_frontal_face_detector, 
        "Returns the default face detector");

240
    def("train_simple_object_detector", train_simple_object_detector,
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        (arg("dataset_filename"), arg("detector_output_filename"), arg("options")),
"requires \n\
    - options.C > 0 \n\
ensures \n\
    - Uses the structural_object_detection_trainer to train a \n\
      simple_object_detector based on the labeled images in the XML file \n\
      dataset_filename.  This function assumes the file dataset_filename is in the \n\
      XML format produced by dlib's save_image_dataset_metadata() routine. \n\
    - This function will apply a reasonable set of default parameters and \n\
      preprocessing techniques to the training procedure for simple_object_detector \n\
      objects.  So the point of this function is to provide you with a very easy \n\
      way to train a basic object detector.   \n\
    - The trained object detector is serialized to the file detector_output_filename." 
    /*!
        requires
            - options.C > 0
        ensures
            - Uses the structural_object_detection_trainer to train a
              simple_object_detector based on the labeled images in the XML file
              dataset_filename.  This function assumes the file dataset_filename is in the
              XML format produced by dlib's save_image_dataset_metadata() routine.
            - This function will apply a reasonable set of default parameters and
              preprocessing techniques to the training procedure for simple_object_detector
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
              objects.  So the point of this function is to provide you with a very easy
              way to train a basic object detector.  
            - The trained object detector is serialized to the file detector_output_filename.
    !*/
        );

    def("train_simple_object_detector", train_simple_object_detector_on_images_py,
        (arg("images"), arg("boxes"), arg("detector_output_filename"), arg("options")),
"requires \n\
    - options.C > 0 \n\
    - len(images) == len(boxes) \n\
    - images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
    - boxes should be a list of lists of dlib.rectangle object. \n\
ensures \n\
    - Uses the structural_object_detection_trainer to train a \n\
      simple_object_detector based on the labeled images and bounding boxes.  \n\
    - This function will apply a reasonable set of default parameters and \n\
      preprocessing techniques to the training procedure for simple_object_detector \n\
      objects.  So the point of this function is to provide you with a very easy \n\
      way to train a basic object detector.   \n\
    - The trained object detector is serialized to the file detector_output_filename." 
    /*!
        requires
            - options.C > 0
            - len(images) == len(boxes)
            - images should be a list of numpy matrices that represent images, either RGB or grayscale.
            - boxes should be a dlib.rectangles object (i.e. an array of rectangles).
            - boxes should be a list of lists of dlib.rectangle object.
        ensures
            - Uses the structural_object_detection_trainer to train a
              simple_object_detector based on the labeled images and bounding boxes. 
            - This function will apply a reasonable set of default parameters and
              preprocessing techniques to the training procedure for simple_object_detector
297
298
299
300
301
              objects.  So the point of this function is to provide you with a very easy
              way to train a basic object detector.  
            - The trained object detector is serialized to the file detector_output_filename.
    !*/
        );
302
303

    def("test_simple_object_detector", test_simple_object_detector,
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
            (arg("dataset_filename"), arg("detector_filename")),
            "ensures \n\
                - Loads an image dataset from dataset_filename.  We assume dataset_filename is \n\
                  a file using the XML format written by save_image_dataset_metadata(). \n\
                - Loads a simple_object_detector from the file detector_filename.  This means \n\
                  detector_filename should be a file produced by the train_simple_object_detector()  \n\
                  routine. \n\
                - This function tests the detector against the dataset and returns the \n\
                  precision, recall, and average precision of the detector.  In fact, The \n\
                  return value of this function is identical to that of dlib's \n\
                  test_object_detection_function() routine.  Therefore, see the documentation \n\
                  for test_object_detection_function() for a detailed definition of these \n\
                  metrics. "
            /*!
                ensures
                    - Loads an image dataset from dataset_filename.  We assume dataset_filename is
                      a file using the XML format written by save_image_dataset_metadata().
                    - Loads a simple_object_detector from the file detector_filename.  This means
                      detector_filename should be a file produced by the train_simple_object_detector()
                      routine.
                    - This function tests the detector against the dataset and returns the
                      precision, recall, and average precision of the detector.  In fact, The
                      return value of this function is identical to that of dlib's
                      test_object_detection_function() routine.  Therefore, see the documentation
                      for test_object_detection_function() for a detailed definition of these
                      metrics.
            !*/
331
        );
332

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    def("test_simple_object_detector", test_simple_object_detector_with_images_py,
            (arg("images"), arg("boxes"), arg("detector_filename")),
            "requires \n\
               - len(images) == len(boxes) \n\
               - images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
               - boxes should be a list of lists of dlib.rectangle object. \n\
             ensures \n\
               - Loads a simple_object_detector from the file detector_filename.  This means \n\
                 detector_filename should be a file produced by the train_simple_object_detector() \n\
                 routine. \n\
               - This function tests the detector against the dataset and returns the \n\
                 precision, recall, and average precision of the detector.  In fact, The \n\
                 return value of this function is identical to that of dlib's \n\
                 test_object_detection_function() routine.  Therefore, see the documentation \n\
                 for test_object_detection_function() for a detailed definition of these \n\
                 metrics. "
    );
350
    {
Patrick Snape's avatar
Patrick Snape committed
351
    typedef simple_object_detector type;
352
353
354
355
356
357
358
359
360
    class_<type>("simple_object_detector", 
        "This object represents a sliding window histogram-of-oriented-gradients based object detector.")
        .def("__init__", make_constructor(&load_object_from_file<type>),  
"Loads a simple_object_detector from a file that contains the output of the \n\
train_simple_object_detector() routine." 
            /*!
                Loads a simple_object_detector from a file that contains the output of the
                train_simple_object_detector() routine.
            !*/)
Patrick Snape's avatar
Patrick Snape committed
361
        .def("__call__", run_detector_with_upscale, (arg("image"), arg("upsample_num_times")=0),
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a list of detections.   \n\
    - Upsamples the image upsample_num_times before running the basic \n\
      detector.  If you don't know how many times you want to upsample then \n\
      don't provide a value for upsample_num_times and an appropriate \n\
      default will be used." 
            /*!
                requires
                    - image is a numpy ndarray containing either an 8bit grayscale or RGB
                      image.
                    - upsample_num_times >= 0
                ensures
                    - This function runs the object detector on the input image and returns
                      a list of detections.  
                    - Upsamples the image upsample_num_times before running the basic
                      detector.  If you don't know how many times you want to upsample then
                      don't provide a value for upsample_num_times and an appropriate
                      default will be used.
            !*/
            )
        .def_pickle(serialize_pickle<type>());
    }
389
390
391
392
393
394
395
396
397
398
399
400
401
    {
    typedef std::vector<rectangle> type;
    class_<type>("rectangles", "An array of rectangle objects.")
        .def(vector_indexing_suite<type>())
        .def("clear", &type::clear)
        .def("resize", resize<type>)
        .def_pickle(serialize_pickle<type>());
    }
}

// ----------------------------------------------------------------------------------------