dnn.cpp 47 KB
Newer Older
Davis King's avatar
Davis King committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.


#include <sstream>
#include <string>
#include <cstdlib>
#include <ctime>
#include <vector>
#include "../dnn.h"

#include "tester.h"


namespace  
{

    using namespace test;
    using namespace dlib;
    using namespace std;

    logger dlog("test.dnn");

// ----------------------------------------------------------------------------------------

    template <typename T>
    float compare_gradients (
        const tensor& t,
        T grad
    )
    {
        float max_error = 0;
        auto p = t.host();
        for (size_t i = 0; i < t.size(); ++i)
        {
            max_error = std::max(max_error, std::abs(p[i]-grad(i)));
        }
        return max_error;
    }

Davis King's avatar
Davis King committed
41
42
43
44
// ----------------------------------------------------------------------------------------

    void test_tanh()
    {
45
        using namespace dlib::tt;
Davis King's avatar
Davis King committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        print_spinner();
        resizable_tensor src(5,5), dest(5,5), gradient_input(5,5);
        src = matrix_cast<float>(gaussian_randm(5,5, 0));
        dest = matrix_cast<float>(gaussian_randm(5,5, 1));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5, 2));



        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
                tanh(dest, src);
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };

        resizable_tensor src_grad;
        src_grad.copy_size(src);
        src_grad = 0;

        tanh(dest, src);
        tanh_gradient(src_grad, dest, gradient_input);

        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);
    }

79
80
    void test_sigmoid()
    {
81
        using namespace dlib::tt;
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        print_spinner();
        resizable_tensor src(5,5), dest(5,5), gradient_input(5,5);
        src = matrix_cast<float>(gaussian_randm(5,5, 0));
        dest = matrix_cast<float>(gaussian_randm(5,5, 1));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5, 2));



        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
                sigmoid(dest, src);
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };

        resizable_tensor src_grad;
        src_grad.copy_size(src);
        src_grad = 0;

        sigmoid(dest, src);
        sigmoid_gradient(src_grad, dest, gradient_input);

        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);
    }

115
116
    void test_softmax()
    {
117
        using namespace dlib::tt;
118
        print_spinner();
Davis King's avatar
Davis King committed
119
120
121
122
123
124
        const long nr = 3;
        const long nc = 3;
        resizable_tensor src(5,5,nr,nr), dest(5,5,nr,nc), gradient_input(5,5,nr,nc);
        src = matrix_cast<float>(gaussian_randm(5,5*nr*nc, 0));
        dest = matrix_cast<float>(gaussian_randm(5,5*nr*nc, 1));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5*nr*nc, 2));
125
126
127
128
129
130
131



        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
Davis King's avatar
Davis King committed
132
                tt::softmax(dest, src);
133
134
135
136
137
138
139
140
141
142
143
144
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };

        resizable_tensor src_grad;
        src_grad.copy_size(src);
        src_grad = 0;

Davis King's avatar
Davis King committed
145
        tt::softmax(dest, src);
146
147
148
149
150
151
152
        softmax_gradient(src_grad, dest, gradient_input);

        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);
    }

Davis King's avatar
Davis King committed
153
154
    void test_batch_normalize()
    {
155
        using namespace dlib::tt;
156
        print_spinner();
Davis King's avatar
Davis King committed
157
        resizable_tensor src(5,5), gamma(1,5), beta(1,5), dest, dest2, dest3, means, vars, gradient_input(5,5);
Davis King's avatar
Davis King committed
158
159
160
161
162
163
164
165
        src = matrix_cast<float>(gaussian_randm(5,5, 0));
        gamma = matrix_cast<float>(gaussian_randm(1,5, 1));
        beta = matrix_cast<float>(gaussian_randm(1,5, 2));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5, 3));

        gamma = 1;
        beta = 0;

166
        resizable_tensor running_means;
167
168
        resizable_tensor running_variances;
        batch_normalize(dest, means, vars, 1, running_means, running_variances, src, gamma, beta);
169
170
        const double scale = (src.num_samples())/(src.num_samples()-1.0);
        // Turn back into biased variance estimate because that's how batch_normalize() works, so if we want to match it this is necessary.
171
172
        running_variances = mat(running_variances)/scale; 
        batch_normalize_inference(dest2, src, gamma, beta, running_means, running_variances);
173
        DLIB_TEST_MSG(max(abs(mat(dest2)-mat(dest))) < 1e-5, max(abs(mat(dest2)-mat(dest))));
Davis King's avatar
Davis King committed
174
175
        cpu::batch_normalize_inference(dest3, src, gamma, beta, running_means, running_variances);
        DLIB_TEST_MSG(max(abs(mat(dest3)-mat(dest))) < 1e-5, max(abs(mat(dest3)-mat(dest))));
Davis King's avatar
Davis King committed
176
177
178
179
180
181


        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
182
                batch_normalize(dest, means, vars, 1, running_means, running_variances, src, gamma, beta);
Davis King's avatar
Davis King committed
183
184
185
186
187
188
189
190
191
192
193
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };
        auto grad_gamma = [&](long idx) {
            auto f = [&](float eps) {
                const float old = gamma.host()[idx];
                gamma.host()[idx] += eps;
194
                batch_normalize(dest, means, vars, 1, running_means, running_variances, src, gamma, beta);
Davis King's avatar
Davis King committed
195
196
197
198
199
200
201
202
203
204
205
                float result = dot(gradient_input, dest);
                gamma.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };
        auto grad_beta = [&](long idx) {
            auto f = [&](float eps) {
                const float old = beta.host()[idx];
                beta.host()[idx] += eps;
206
                batch_normalize(dest, means, vars, 1, running_means, running_variances, src, gamma, beta);
Davis King's avatar
Davis King committed
207
208
209
210
211
212
213
214
215
216
217
218
219
                float result = dot(gradient_input, dest);
                beta.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };

        resizable_tensor src_grad, gamma_grad, beta_grad;
        src_grad.copy_size(src);
        gamma_grad.copy_size(gamma);
        beta_grad.copy_size(beta);
        src_grad = 0;
Davis King's avatar
Davis King committed
220
221
        gamma_grad = 8;
        beta_grad = 8;
Davis King's avatar
Davis King committed
222

223
        batch_normalize_gradient(gradient_input, means, vars, src, gamma, src_grad, gamma_grad, beta_grad);
Davis King's avatar
Davis King committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

        grad_error = compare_gradients(gamma_grad, grad_gamma);
        dlog << LINFO << "gamma error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

        grad_error = compare_gradients(beta_grad, grad_beta);
        dlog << LINFO << "beta error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);
    }

    void test_batch_normalize_conv()
    {
240
        using namespace dlib::tt;
241
        print_spinner();
Davis King's avatar
Davis King committed
242
        resizable_tensor src(5,5,4,4), gamma(1,5), beta(1,5), dest, dest2, dest3, means, vars, gradient_input(5,5,4,4);
Davis King's avatar
Davis King committed
243
244
245
246
247
248
249
250
        src = matrix_cast<float>(gaussian_randm(5,5*4*4, 0));
        gamma = matrix_cast<float>(gaussian_randm(1,5, 1));
        beta = matrix_cast<float>(gaussian_randm(1,5, 2));
        gradient_input = matrix_cast<float>(gaussian_randm(5,5*4*4, 3));

        gamma = 1;
        beta = 0;

251
        resizable_tensor running_means;
252
253
        resizable_tensor running_variances;
        batch_normalize_conv(dest, means, vars, 1, running_means, running_variances, src, gamma, beta);
254
255
256
        const double scale = (src.num_samples()*src.nr()*src.nc())/(src.num_samples()*src.nr()*src.nc()-1.0);
        // Turn back into biased variance estimate because that's how
        // batch_normalize_conv() works, so if we want to match it this is necessary.
257
258
        running_variances = mat(running_variances)/scale; 
        batch_normalize_conv_inference(dest2, src, gamma, beta, running_means, running_variances);
259
        DLIB_TEST(max(abs(mat(dest2)-mat(dest))) < 1e-5);
Davis King's avatar
Davis King committed
260
261
        cpu::batch_normalize_conv_inference(dest3, src, gamma, beta, running_means, running_variances);
        DLIB_TEST(max(abs(mat(dest3)-mat(dest))) < 1e-5);
Davis King's avatar
Davis King committed
262
263
264
265
266
267


        auto grad_src = [&](long idx) {
            auto f = [&](float eps) {
                const float old = src.host()[idx];
                src.host()[idx] += eps;
268
                batch_normalize_conv(dest, means, vars, 1, running_means, running_variances, src, gamma, beta);
Davis King's avatar
Davis King committed
269
270
271
272
273
274
275
276
277
278
279
                float result = dot(gradient_input, dest);
                src.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };
        auto grad_gamma = [&](long idx) {
            auto f = [&](float eps) {
                const float old = gamma.host()[idx];
                gamma.host()[idx] += eps;
280
                batch_normalize_conv(dest, means, vars, 1, running_means, running_variances, src, gamma, beta);
Davis King's avatar
Davis King committed
281
282
283
284
285
286
287
288
289
290
291
                float result = dot(gradient_input, dest);
                gamma.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };
        auto grad_beta = [&](long idx) {
            auto f = [&](float eps) {
                const float old = beta.host()[idx];
                beta.host()[idx] += eps;
292
                batch_normalize_conv(dest, means, vars, 1, running_means, running_variances, src, gamma, beta);
Davis King's avatar
Davis King committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
                float result = dot(gradient_input, dest);
                beta.host()[idx] = old;
                return result;
            };
            const float eps = 0.01;
            return (f(+eps)-f(-eps))/(2*eps);
        };


        resizable_tensor src_grad, gamma_grad, beta_grad;
        src_grad.copy_size(src);
        gamma_grad.copy_size(gamma);
        beta_grad.copy_size(beta);
        src_grad = 0;
Davis King's avatar
Davis King committed
307
308
        gamma_grad = 9;
        beta_grad = 9;
Davis King's avatar
Davis King committed
309

310
        batch_normalize_conv_gradient(gradient_input, means, vars, src, gamma, src_grad, gamma_grad, beta_grad);
Davis King's avatar
Davis King committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326


        auto grad_error = compare_gradients(src_grad, grad_src);
        dlog << LINFO << "src error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

        grad_error = compare_gradients(gamma_grad, grad_gamma);
        dlog << LINFO << "gamma error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

        grad_error = compare_gradients(beta_grad, grad_beta);
        dlog << LINFO << "beta error: " << grad_error;
        DLIB_TEST(grad_error < 0.001);

    }

327
328
329
330
// ----------------------------------------------------------------------------------------

    void test_basic_tensor_ops()
    {
331
        using namespace dlib::tt;
332
333
334
        print_spinner();
        resizable_tensor dest, src(3,4), A(1,4), B(1,4);
        src = 2;
335
        dest.copy_size(src);
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        affine_transform(dest, src, 2, 3);
        dlog << LINFO << mat(dest);
        matrix<float> truth1(3,4), truth2(3,4);

        truth1 = 7;
        truth2 = 7, 10,  7,  7,
        7, 10,  7,  7,
        7, 10,  7,  7;
        DLIB_TEST(max(abs(truth1-mat(dest))) < 1e-5);

        A = 2;
        B = 3;
        A.host()[1] = 3;
        B.host()[1] = 4;
        dest = 0;
        affine_transform(dest, src, A, B);
        dlog << LINFO << mat(dest);
        DLIB_TEST(max(abs(truth2-mat(dest))) < 1e-5);

        A.set_size(3,4);
        B.set_size(3,4);
        A = matrix_cast<float>(gaussian_randm(3,4, 1));
        B = matrix_cast<float>(gaussian_randm(3,4, 2));
        affine_transform(dest, src, A, B);
        dlog << LINFO << mat(dest);
        matrix<float> truth3 = pointwise_multiply(mat(src), mat(A)) + mat(B);
        DLIB_TEST(max(abs(truth3-mat(dest))) < 1e-5);

        matrix<float> truth4 = pointwise_multiply(mat(A), mat(B));
365
        tt::multiply(A, A, B);
366
367
368
369
370
371
        DLIB_TEST(max(abs(truth4-mat(A))) < 1e-5);

        matrix<float> truth5 = mat(B) > 0.1;
        dlog << LINFO << truth5;
        threshold(B, 0.1);
        DLIB_TEST(max(abs(truth5-mat(B))) < 1e-5);
Davis King's avatar
Davis King committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

        int cnt = 0;
        for(auto& x : A)
            x = cnt++;

        truth1.set_size(2,2);
        truth2.set_size(2,2);
        truth3.set_size(2,2);
        truth1 = 0,1,2,3;
        truth2 = 4,5,6,7;
        truth3 = 8,9,10,11;

        alias_tensor at(2,2);
        auto A0 = at(A,0);
        auto A4 = at(A,4);
        auto A8 = at(A,8);
        DLIB_TEST(mat(A0) == truth1);
        DLIB_TEST(mat(at(A,4)) == truth2);
        DLIB_TEST(mat(A8) == truth3);

        A4 += uniform_matrix<float>(2,2,2);
        truth2 += 2;
        DLIB_TEST(mat(A4) == truth2);
        truth1 = trans(reshape_to_column_vector(truth1));
        truth2 = trans(reshape_to_column_vector(truth2));
        truth3 = trans(reshape_to_column_vector(truth3));

        DLIB_TEST(mat(A) == join_cols(truth1,join_cols(truth2,truth3)));

        affine_transform(A,A,1,2);
        truth1 += 2;
        truth2 += 2;
        truth3 += 2;
        DLIB_TEST(mat(at(A,4)) == reshape(truth2,2,2));
        DLIB_TEST(mat(A) == join_cols(truth1,join_cols(truth2,truth3)));
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

        {
            resizable_tensor dest(3,4);
            resizable_tensor A, B;
            A = dest;
            B = dest;

            tensor_rand rnd;
            rnd.fill_uniform(dest);
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);

            dest.set_size(1,4);

            tt::multiply(dest, A, B);
            DLIB_TEST(max(abs(mat(dest)-sum_rows(pointwise_multiply(mat(A),mat(B))))) < 1e-6); 

            A.set_size(1,4);
            rnd.fill_uniform(A);
            matrix<float> AA = join_cols(mat(A),mat(A)); AA = join_cols(mat(A),AA);

            tt::multiply(dest, A, B);
            DLIB_TEST(max(abs(mat(dest)-sum_rows(pointwise_multiply(AA,mat(B))))) < 1e-6); 

            tt::multiply(dest, B, A);
            DLIB_TEST(max(abs(mat(dest)-sum_rows(pointwise_multiply(AA,mat(B))))) < 1e-6); 

            dest.set_size(3,4);
            tt::multiply(dest, B, A);
            DLIB_TEST(max(abs(mat(dest)-pointwise_multiply(AA,mat(B)))) < 1e-6); 

            tt::multiply(dest, A, B);
            DLIB_TEST(max(abs(mat(dest)-pointwise_multiply(AA,mat(B)))) < 1e-6); 
        }
Davis King's avatar
Davis King committed
441

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
        {
            resizable_tensor A, B, truth;
            A.set_size(2,3,4,5);
            truth.copy_size(A);
            B.copy_size(A);

            A = 4;
            B = 1;
            truth = 1;
            DLIB_TEST(max(abs(mat(B)- mat(truth))) < 1e-5);
            memcpy(A, truth);
            DLIB_TEST(max(abs(mat(A)- mat(truth))) < 1e-5);

            A = 4;
            A.host();
            B.host();
            memcpy(A, truth);
            DLIB_TEST(max(abs(mat(A)- mat(truth))) < 1e-5);

Davis King's avatar
Davis King committed
461
#ifdef DLIB_USE_CUDA
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
            A = 4;
            A.device();
            B.host();
            memcpy(A, truth);
            DLIB_TEST(max(abs(mat(A)- mat(truth))) < 1e-5);

            A = 4;
            A.device();
            B.device();
            memcpy(A, truth);
            DLIB_TEST(max(abs(mat(A)- mat(truth))) < 1e-5);

            A = 4;
            A.host();
            B.device();
            memcpy(A, truth);
            DLIB_TEST(max(abs(mat(A)- mat(truth))) < 1e-5);

            A = 4;
            A.host_write_only();
            B.device();
            memcpy(A, truth);
            DLIB_TEST(max(abs(mat(A)- mat(truth))) < 1e-5);
Davis King's avatar
Davis King committed
485
#endif
486
487
        }

Davis King's avatar
Davis King committed
488
489
        {
            resizable_tensor A, B;
Davis King's avatar
Davis King committed
490
491
            A.set_size(2,3,4,5);
            B.set_size(2,3,4,5);
Davis King's avatar
Davis King committed
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

            tensor_rand rnd;
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);

            matrix<float> truth;

            truth = 2*mat(A) + 3*mat(B);
            tt::add(2, A, 3, B);
            DLIB_TEST(max(abs(mat(A)-truth )) < 1e-6);


            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
            truth = 0*mat(A) + 3*mat(B);
            tt::add(0, A, 3, B);
            DLIB_TEST(max(abs(mat(A)-truth )) < 1e-6);

            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
            truth = 1*mat(A) + 0*mat(B);
            tt::add(1, A, 0, B);
            DLIB_TEST(max(abs(mat(A)-truth )) < 1e-6);


            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
            truth = 0*mat(A) + 0*mat(B);
            tt::add(0, A, 0, B);
            DLIB_TEST(max(abs(mat(A)-truth )) < 1e-6);


Davis King's avatar
Davis King committed
524
            B.set_size(1,3,4,5);
Davis King's avatar
Davis King committed
525
526
527
528
529
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
            truth = 2*mat(A) + 3*join_cols(mat(B), mat(B));
            tt::add(2, A, 3, B);
            DLIB_TEST(max(abs(mat(A)-truth )) < 1e-6);
Davis King's avatar
Davis King committed
530
            DLIB_TEST(A.num_samples()==2);
Davis King's avatar
Davis King committed
531

Davis King's avatar
Davis King committed
532
            B.set_size(1,1,4,5);
Davis King's avatar
Davis King committed
533
534
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
Davis King's avatar
Davis King committed
535
536
            matrix<float> temp = join_rows(mat(B), join_rows(mat(B),mat(B)));
            truth = 2*mat(A) + 3*join_cols(temp,temp);
Davis King's avatar
Davis King committed
537
            tt::add(2, A, 3, B);
Davis King's avatar
Davis King committed
538
539
540
541
542
543
544
545
546
            DLIB_TEST_MSG(max(abs(mat(A)-truth )) < 1e-6, max(abs(mat(A)-truth )));

            B.set_size(1,3,1,1);
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);
            resizable_tensor AA(A), BB(B);
            tt::add(2, A, 3, B);
            cpu::add(2, AA, 3, BB);
            DLIB_TEST_MSG(max(abs(mat(A)-mat(AA) )) < 1e-6, max(abs(mat(A)-mat(AA) )));
Davis King's avatar
Davis King committed
547
        }
548
549
    }

Davis King's avatar
Davis King committed
550
551
// ----------------------------------------------------------------------------------------

552
#ifdef DLIB_USE_CUDA
553

554
555
556
557
558
559
560
561
562
563
564
565
    void test_conv()
    {
        cuda::tensor_conv conv1;
        cpu::tensor_conv conv2;

        dlib::rand prnd;
        for (int iter = 0; iter < 400; ++iter)
        {
            print_spinner();

            resizable_tensor data(prnd.get_random_32bit_number()%5+1,
                prnd.get_random_32bit_number()%5+1,
566
567
                prnd.get_random_32bit_number()%25+1,
                prnd.get_random_32bit_number()%25+1
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
            );
            resizable_tensor filters(
                prnd.get_random_32bit_number()%5+1,
                data.k(),
                prnd.get_random_32bit_number()%6+1,
                prnd.get_random_32bit_number()%6+1 
            );

            tt::tensor_rand rnd;
            rnd.fill_uniform(data);
            rnd.fill_uniform(filters);


            resizable_tensor output1, output2;


            const int stride_y = prnd.get_random_32bit_number()%5+1;
            const int stride_x = prnd.get_random_32bit_number()%5+1;
586
587
588
589
590
591
592
593
            int padding_y = prnd.get_random_32bit_number()%(filters.nr()/2+1);
            int padding_x = prnd.get_random_32bit_number()%(filters.nc()/2+1);
            if (!(filters.nr() <= data.nr() + 2*padding_y))
                padding_y = (filters.nr()-data.nr()+1)/2;
            if (!(filters.nc() <= data.nc() + 2*padding_x))
                padding_x = (filters.nc()-data.nc()+1)/2;
            conv1(output1, data, filters, stride_y,stride_x, padding_y, padding_x);
            conv2(output2, data, filters, stride_y,stride_x, padding_y, padding_x);
594
            dlog << LINFO << "forward error: "<< max(abs(mat(output1)-mat(output2)));
595
596
597
598
            DLIB_TEST_MSG(max(abs(mat(output1)-mat(output2))) < 1e-3, max(abs(mat(output1)-mat(output2)))
                 <<"\n\t padding_y: "<< padding_y 
                 <<"\n\t padding_x: "<< padding_x 
                 );
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630



            resizable_tensor gi, data_gradient1, data_gradient2;
            gi.copy_size(output1);
            rnd.fill_uniform(gi);

            data_gradient1.copy_size(data);
            data_gradient2.copy_size(data);
            data_gradient1 = 1;
            data_gradient2 = 1;

            conv1.get_gradient_for_data(gi, filters, data_gradient1);
            conv2.get_gradient_for_data(gi, filters, data_gradient2);

            dlog << LINFO << "data gradient error: "<< max(abs(mat(data_gradient1)-mat(data_gradient2)));
            DLIB_TEST(max(abs(mat(data_gradient1)-mat(data_gradient2))) < 1e-3);


            resizable_tensor filter_gradient1, filter_gradient2;
            gi.copy_size(output1);
            rnd.fill_uniform(gi);

            filter_gradient1.copy_size(filters);
            filter_gradient2.copy_size(filters);
            filter_gradient1 = 1;
            filter_gradient2 = 1;

            conv1.get_gradient_for_filters(gi, data, filter_gradient1);
            conv2.get_gradient_for_filters(gi, data, filter_gradient2);

            dlog << LINFO << "filter gradient error: "<< max(abs(mat(filter_gradient1)-mat(filter_gradient2)));
631
            DLIB_TEST_MSG(max(abs(mat(filter_gradient1)-mat(filter_gradient2))) < 1e-3, max(abs(mat(filter_gradient1)-mat(filter_gradient2))));
632
633
634
        }
    }

Davis King's avatar
Davis King committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
    void compare_adam()
    {
        float t = 2;
        tt::tensor_rand rnd;
        resizable_tensor s, m, v, params, params_grad;
        s.set_size(89,90,60,73);
        m.copy_size(s);
        v.copy_size(s);
        params.copy_size(s);
        params_grad.copy_size(s);

        rnd.fill_uniform(s);
        rnd.fill_uniform(m);
        rnd.fill_uniform(v);
        rnd.fill_uniform(params);
        rnd.fill_uniform(params_grad);

        resizable_tensor mm(m), vv(v);
        cpu::compute_adam_update(s, mm, vv, t, 0.01, 0.001, 0.9, 0.99, params, params_grad);
        matrix<float> s1 = mat(s);
        
        rnd.fill_uniform(s);
        cuda::compute_adam_update(s, m, v, t, 0.01, 0.001, 0.9, 0.99, params, params_grad);
        matrix<float> s2 = mat(s);

        DLIB_TEST_MSG(max(abs(s1-s2)) < 1e-6, max(abs(s1-s2)));
        DLIB_TEST_MSG(max(abs(mat(m)-mat(mm))) < 1e-6, max(abs(mat(m)-mat(mm))));
        DLIB_TEST_MSG(max(abs(mat(v)-mat(vv))) < 1e-6, max(abs(mat(v)-mat(vv))));
    }

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
    void test_add()
    {
        print_spinner();
        dlib::rand rnd;
        tt::tensor_rand trnd;
        for (int iter = 0; iter < 300; ++iter)
        {
            resizable_tensor dest1(rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1);
            resizable_tensor dest2;
            dest2.copy_size(dest1);
            resizable_tensor src1(rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1);
            resizable_tensor src2(rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1,
                                  rnd.get_random_32bit_number()%4+1);

            trnd.fill_uniform(dest1);
            trnd.fill_uniform(dest2);
            trnd.fill_uniform(src1);
            trnd.fill_uniform(src2);
            cpu::add(dest1, src1, src2);
            cuda::add(dest2, src1, src2);

            DLIB_TEST(max(abs(mat(dest1) - mat(dest2))) < 1e-5);
        }

        // make sure we have a test for the case where all tensors have the same
        // dimensions.
        resizable_tensor dest1(3,4,5,6);
        resizable_tensor dest2;
        resizable_tensor src1;
        resizable_tensor src2;
        dest2.copy_size(dest1);
        src1.copy_size(dest1);
        src2.copy_size(dest1);

        trnd.fill_uniform(dest1);
        trnd.fill_uniform(dest2);
        trnd.fill_uniform(src1);
        trnd.fill_uniform(src2);

        cpu::add(dest1, src1, src2);
        cuda::add(dest2, src1, src2);

        DLIB_TEST(max(abs(mat(dest1) - mat(dest2))) < 1e-5);
    }

Davis King's avatar
Davis King committed
718
719
    void test_more_ops(const long nr, const long nc)
    {
720
        using namespace dlib::tt;
Davis King's avatar
Davis King committed
721
722
723
724
725
726
727
728
729
730
731
732
733
        print_spinner();
        // We are going to make sure that the CPU implementation of these things matches
        // the CUDA implementation.

        tensor_rand rnd;

        resizable_tensor dest(nr,nc), src(nr,nc), dest2, src2;
        resizable_tensor srcb(nr,nc), srcc(nr,nc), srcb2, srcc2;


        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        dest2 = dest; src2 = src;
734
735
        cuda::multiply(dest, dest, src);
        cpu::multiply(dest2, dest2, src2);
Davis King's avatar
Davis King committed
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
        DLIB_TEST(equal(mat(dest),mat(dest2)));


        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        dest2 = dest; src2 = src;
        cuda::affine_transform(dest, src, 2, 3);
        cpu::affine_transform(dest2, src2, 2, 3);
        DLIB_TEST(equal(mat(dest),mat(dest2)));

        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        rnd.fill_uniform(srcb);
        dest2 = dest; src2 = src; srcb2 = srcb;
        cuda::affine_transform(dest, src, srcb, 2, 3, 4);
        cpu::affine_transform(dest2, src2, srcb2, 2, 3, 4);
        DLIB_TEST(equal(mat(dest),mat(dest2)));

        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        rnd.fill_uniform(srcb);
        rnd.fill_uniform(srcc);
        dest2 = dest; src2 = src; srcb2 = srcb; srcc2 = srcc;
        cuda::affine_transform(dest, src, srcb, srcc, 2, 3, 4, 5);
        cpu::affine_transform(dest2, src2, srcb2, srcc2, 2, 3, 4, 5);
        DLIB_TEST(equal(mat(dest),mat(dest2)));


        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        rnd.fill_uniform(srcb);
        rnd.fill_uniform(srcc);
        dest2 = dest; src2 = src; srcb2 = srcb; srcc2 = srcc;
        cuda::affine_transform(dest, src, srcb, srcc);
        cpu::affine_transform(dest2, src2, srcb2, srcc2);
        DLIB_TEST(equal(mat(dest),mat(dest2)));
        // now exercise code path where the A/B tensors have num_samples()==1
        srcb.set_size(1,nc);
        srcc.set_size(1,nc);
        rnd.fill_uniform(dest);
        rnd.fill_uniform(src);
        rnd.fill_uniform(srcb);
        rnd.fill_uniform(srcc);
        dest2 = dest; src2 = src; srcb2 = srcb; srcc2 = srcc;
        cuda::affine_transform(dest, src, srcb, srcc);
        cpu::affine_transform(dest2, src2, srcb2, srcc2);
        DLIB_TEST(equal(mat(dest),mat(dest2)));


        rnd.fill_uniform(src);
        src2 = src;
        cuda::threshold(src, 0.5);
        cpu::threshold(src2, 0.5);
        DLIB_TEST(equal(mat(src),mat(src2)));

791
792
793
794
795
796
797
798
799
800
801
802
803
804
        {
            resizable_tensor dest(3,4);
            resizable_tensor A, B;
            A = dest;
            B = dest;

            tensor_rand rnd;
            rnd.fill_uniform(dest);
            rnd.fill_uniform(A);
            rnd.fill_uniform(B);

            dest.set_size(1,4);

            cuda::multiply(dest, A, B);
805
            DLIB_TEST_MSG(max(abs(mat(dest)-sum_rows(pointwise_multiply(mat(A),mat(B))))) < 1e-6, max(abs(mat(dest)-sum_rows(pointwise_multiply(mat(A),mat(B)))))); 
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823

            A.set_size(1,4);
            rnd.fill_uniform(A);
            matrix<float> AA = join_cols(mat(A),mat(A)); AA = join_cols(mat(A),AA);

            cuda::multiply(dest, A, B);
            DLIB_TEST(max(abs(mat(dest)-sum_rows(pointwise_multiply(AA,mat(B))))) < 1e-6); 

            cuda::multiply(dest, B, A);
            DLIB_TEST(max(abs(mat(dest)-sum_rows(pointwise_multiply(AA,mat(B))))) < 1e-6); 

            dest.set_size(3,4);
            cuda::multiply(dest, B, A);
            DLIB_TEST(max(abs(mat(dest)-pointwise_multiply(AA,mat(B)))) < 1e-6); 

            cuda::multiply(dest, A, B);
            DLIB_TEST(max(abs(mat(dest)-pointwise_multiply(AA,mat(B)))) < 1e-6); 
        }
Davis King's avatar
Davis King committed
824
825
    }

826
827
828
829
830
831
832
833
// ----------------------------------------------------------------------------------------

    void compare_bn_gpu_and_cpu()
    {
        print_spinner();
        resizable_tensor dest, dest2;
        resizable_tensor means, means2;
        resizable_tensor invstds, invstds2;
834
        resizable_tensor running_means, running_means2;
835
        resizable_tensor running_variances, running_variances2;
836
837
838
839
840
841
842
843
844
        resizable_tensor src(64,20,100,100);
        resizable_tensor gamma(1,20,100,100);
        resizable_tensor beta(1,20,100,100);
        gamma = 2;
        beta = 3;
        tt::tensor_rand rnd;
        rnd.fill_uniform(src);


845
846
        cpu::batch_normalize(dest, means, invstds, 1, running_means, running_variances, src, gamma, beta);
        cuda::batch_normalize(dest2,means2,invstds2, 1, running_means2, running_variances2, src, gamma, beta);
847
848
849
850

        dlog << LINFO << "dest error:    "<< max(abs(mat(dest) -mat(dest2)));
        dlog << LINFO << "means error:   "<< max(abs(mat(means) -mat(means2)));
        dlog << LINFO << "invstds error: "<< max(abs(mat(invstds) -mat(invstds2)));
851
        dlog << LINFO << "running_means error:   "<< max(abs(mat(running_means) -mat(running_means2)));
852
        dlog << LINFO << "running_variances error: "<< max(abs(mat(running_variances) -mat(running_variances2)));
853

854
855
856
857
        DLIB_TEST(max(abs(mat(dest) -mat(dest2))) < 1e-4);
        DLIB_TEST(max(abs(mat(means) -mat(means2))) < 1e-4);
        DLIB_TEST(max(abs(mat(invstds) -mat(invstds2))) < 1e-4);
        DLIB_TEST(max(abs(mat(running_means) -mat(running_means2))) < 1e-4);
858
        DLIB_TEST(max(abs(mat(running_variances) -mat(running_variances2))) < 1e-4);
859
860
861
862
863
864
865
866
867
868
869
870
871


        // now check that the gradients match as well
        resizable_tensor gradient_input;
        resizable_tensor src_grad, gamma_grad, beta_grad;
        resizable_tensor src_grad2, gamma_grad2, beta_grad2;
        gradient_input.copy_size(dest);
        src_grad.copy_size(src); src_grad = 0; src_grad2 = src_grad;
        gamma_grad.copy_size(gamma); gamma_grad = 0; gamma_grad2 = gamma_grad;
        beta_grad.copy_size(beta); beta_grad = 0; beta_grad2 = beta_grad;
        rnd.fill_uniform(gradient_input);


872
873
        cpu::batch_normalize_gradient(gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
        cuda::batch_normalize_gradient(gradient_input, means, invstds, src, gamma, src_grad2, gamma_grad2, beta_grad2);
874
875
876
877

        dlog << LINFO << "src_grad error:   " << max(abs(mat(src_grad)-mat(src_grad2)));
        dlog << LINFO << "gamma_grad error: " << max(abs(mat(gamma_grad)-mat(gamma_grad2)));
        dlog << LINFO << "beta_grad error:  " << max(abs(mat(beta_grad)-mat(beta_grad2)));
878
879
880
        DLIB_TEST(max(abs(mat(src_grad)-mat(src_grad2))) < 1e-4);
        DLIB_TEST(max(abs(mat(gamma_grad)-mat(gamma_grad2))) < 1e-4);
        DLIB_TEST(max(abs(mat(beta_grad)-mat(beta_grad2))) < 1e-4);
881
882
883
884
885
886
887
888
    }

    void compare_bn_conv_gpu_and_cpu()
    {
        print_spinner();
        resizable_tensor dest, dest2;
        resizable_tensor means, means2;
        resizable_tensor invstds, invstds2;
889
        resizable_tensor running_means, running_means2;
890
        resizable_tensor running_variances, running_variances2;
891
892
893
894
895
896
897
898
        resizable_tensor src(2,8,10,9);
        resizable_tensor gamma(1,8);
        resizable_tensor beta(1,8);
        gamma = 2;
        beta = 3;
        tt::tensor_rand rnd;
        rnd.fill_uniform(src);

899
900
        cpu::batch_normalize_conv(dest,means,invstds,1,running_means,running_variances, src, gamma, beta);
        cuda::batch_normalize_conv(dest2,means2,invstds2,1,running_means2,running_variances2, src, gamma, beta);
901
902
903
904

        dlog << LINFO << "dest error:    "<< max(abs(mat(dest) -mat(dest2)));
        dlog << LINFO << "means error:   "<< max(abs(mat(means) -mat(means2)));
        dlog << LINFO << "invstds error: "<< max(abs(mat(invstds) -mat(invstds2)));
905
        dlog << LINFO << "running_means error:   "<< max(abs(mat(running_means) -mat(running_means2)));
906
        dlog << LINFO << "running_variances error: "<< max(abs(mat(running_variances) -mat(running_variances2)));
907
908
909
910

        DLIB_TEST(max(abs(mat(dest) -mat(dest2))) < 1e-4);
        DLIB_TEST(max(abs(mat(means) -mat(means2))) < 1e-4);
        DLIB_TEST(max(abs(mat(invstds) -mat(invstds2))) < 1e-4);
911
        DLIB_TEST(max(abs(mat(running_means) -mat(running_means2))) < 1e-4);
912
        DLIB_TEST(max(abs(mat(running_variances) -mat(running_variances2))) < 1e-4);
913
914
915
916
917
918
919
920
921
922
923

        resizable_tensor gradient_input;
        resizable_tensor src_grad, gamma_grad, beta_grad;
        resizable_tensor src_grad2, gamma_grad2, beta_grad2;
        gradient_input.copy_size(dest);
        src_grad.copy_size(src); src_grad = 0; src_grad2 = src_grad;
        gamma_grad.copy_size(gamma); gamma_grad = 0; gamma_grad2 = gamma_grad;
        beta_grad.copy_size(beta); beta_grad = 0; beta_grad2 = beta_grad;
        rnd.fill_uniform(gradient_input);


924
925
        cpu::batch_normalize_conv_gradient(gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
        cuda::batch_normalize_conv_gradient(gradient_input, means, invstds, src, gamma, src_grad2, gamma_grad2, beta_grad2);
926
927
928
929
930
931
932
933

        dlog << LINFO << "src_grad error:   " << max(abs(mat(src_grad)-mat(src_grad2)));
        dlog << LINFO << "gamma_grad error: " << max(abs(mat(gamma_grad)-mat(gamma_grad2)));
        dlog << LINFO << "beta_grad error:  " << max(abs(mat(beta_grad)-mat(beta_grad2)));
        DLIB_TEST(max(abs(mat(src_grad)-mat(src_grad2))) < 1e-4);
        DLIB_TEST(max(abs(mat(gamma_grad)-mat(gamma_grad2))) < 1e-4);
        DLIB_TEST(max(abs(mat(beta_grad)-mat(beta_grad2))) < 1e-4);
    }
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028


    void test_more_ops2()
    {
        dlib::rand rnd;
        tt::tensor_rand trand;

        for (int iter = 0; iter < 100; ++iter)
        {
            print_spinner();
            resizable_tensor dest1, dest2, src1, src2;
            src1.set_size(rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1);
            dest1.copy_size(src1);
            dest2.copy_size(src1);
            src2.set_size(1,src1.k(),1,1);

            trand.fill_uniform(dest1);
            trand.fill_uniform(dest2);
            trand.fill_uniform(src1);
            trand.fill_uniform(src2);

            cpu::multiply_conv(dest1, src1, src2);
            cuda::multiply_conv(dest2, src1, src2);
            DLIB_TEST(max(abs(mat(dest1)-mat(dest2))) < 1e-5);


            // now try it using the other mode of multiply_conv
            src2.copy_size(src1);
            dest1.set_size(1,src1.k(),1,1);
            dest2.set_size(1,src1.k(),1,1);
            trand.fill_uniform(dest1);
            trand.fill_uniform(dest2);
            trand.fill_uniform(src1);
            trand.fill_uniform(src2);
            cpu::multiply_conv(dest1, src1, src2);
            cuda::multiply_conv(dest2, src1, src2);
            const float scale = max(abs(mat(dest1)));
            const float scalem = mean(abs(mat(dest1)));
            DLIB_TEST_MSG(max(abs(mat(dest1)-mat(dest2)))/scale < 1e-4 , max(abs(mat(dest1)-mat(dest2)))/scale);
            DLIB_TEST_MSG(mean(abs(mat(dest1)-mat(dest2)))/scalem < 1e-5 , mean(abs(mat(dest1)-mat(dest2)))/scalem);
        }

        for (int iter = 0; iter < 100; ++iter)
        {
            print_spinner();
            resizable_tensor dest1, dest2, src, A, B;
            src.set_size(rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1);
            dest1.copy_size(src);
            dest2.copy_size(src);
            A.set_size(1,src.k(),1,1);
            B.set_size(1,src.k(),1,1);

            trand.fill_uniform(dest1);
            trand.fill_uniform(dest2);
            trand.fill_uniform(src);
            trand.fill_uniform(A);
            trand.fill_uniform(B);

            cpu::affine_transform_conv(dest1, src, A, B);
            cuda::affine_transform_conv(dest2, src, A, B);
            DLIB_TEST(max(abs(mat(dest1)-mat(dest2))) < 1e-5);
        }

        for (int iter = 0; iter < 100; ++iter)
        {
            print_spinner();
            resizable_tensor dest1, dest2, g;
            g.set_size(rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1,
                rnd.get_random_32bit_number()%30+1);
            dest1.set_size(1,g.k(),1,1);
            dest2.set_size(1,g.k(),1,1);

            trand.fill_uniform(dest1);
            trand.fill_uniform(dest2);
            trand.fill_uniform(g);

            cpu::assign_conv_bias_gradient(dest1, g);
            cuda::assign_conv_bias_gradient(dest2, g);
            const float scale = max(abs(mat(dest1)));
            const float scalem = mean(abs(mat(dest1)));
            DLIB_TEST_MSG(max(abs(mat(dest1)-mat(dest2)))/scale < 1e-4 , max(abs(mat(dest1)-mat(dest2)))/scale);
            DLIB_TEST_MSG(mean(abs(mat(dest1)-mat(dest2)))/scalem < 1e-5 , mean(abs(mat(dest1)-mat(dest2)))/scalem);
        }

    }

#endif // DLIB_USE_CUDA
Davis King's avatar
Davis King committed
1029

1030
1031
1032
1033
1034
1035
// ----------------------------------------------------------------------------------------

    void test_max_pool(
        const int window_height,
        const int window_width,
        const int stride_y,
1036
1037
1038
        const int stride_x,
        const int padding_y,
        const int padding_x
1039
1040
1041
1042
    )
    {
        print_spinner();
        resizable_tensor A, B, gradient_input;
1043
        A.set_size(4,5,16,7);
1044
1045
1046
1047
1048
1049
1050
1051
1052
        B.copy_size(A);
        gradient_input.copy_size(A);

        tt::tensor_rand rnd;
        rnd.fill_gaussian(A,0,1);
        rnd.fill_gaussian(B,0,1);
        rnd.fill_gaussian(gradient_input,0,1);


1053
        tt::pooling mp;
1054

1055
        mp.setup_max_pooling(window_height,window_width,stride_y,stride_x,padding_y,padding_x);
1056
1057
        mp(A, B);

1058
        // make sure max pooling does what it's spec says it should.
1059
1060
        DLIB_TEST( A.num_samples() == B.num_samples());
        DLIB_TEST( A.k() == B.k());
1061
1062
1063
1064
1065
1066

        DLIB_TEST( A.nr() == 1+(B.nr()+2*padding_y-window_height)/stride_y);
        DLIB_TEST( A.nc() == 1+(B.nc()+2*padding_x-window_width)/stride_x);

        const long x_offset = window_width/2 - padding_x;
        const long y_offset = window_height/2 - padding_y;
1067
1068
1069
1070
1071
1072
1073
1074
        for (long s = 0; s < A.num_samples(); ++s)
        {
            for (long k = 0; k < A.k(); ++k)
            {
                for (long r = 0; r < A.nr(); ++r)
                {
                    for (long c = 0; c < A.nc(); ++c)
                    {
1075
1076
1077
                        DLIB_TEST_MSG(image_plane(A,s,k)(r,c) == max(subm_clipped(image_plane(B,s,k),
                                    centered_rect(c*stride_x+x_offset,
                                                  r*stride_y+y_offset,
1078
                                                  window_width,
1079
1080
1081
1082
1083
                                                  window_height))), 
                                                  "padding: "<< padding_x << "  " << padding_y 
                                                  << " window size: " << window_width << " " << window_height 
                                                  << " stride: " << stride_x << " " << stride_y
                                                  );
1084
1085
1086
1087
1088
1089
                    }
                }
            }
        }
    }

1090
1091
1092
1093
1094
1095
// ----------------------------------------------------------------------------------------

    void test_avg_pool(
        const int window_height,
        const int window_width,
        const int stride_y,
1096
1097
1098
        const int stride_x,
        const int padding_y,
        const int padding_x
1099
1100
1101
1102
    )
    {
        print_spinner();
        resizable_tensor A, B, gradient_input;
1103
        A.set_size(4,5,16,7);
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
        B.copy_size(A);
        gradient_input.copy_size(A);

        tt::tensor_rand rnd;
        rnd.fill_gaussian(A,0,1);
        rnd.fill_gaussian(B,0,1);
        rnd.fill_gaussian(gradient_input,0,1);


        tt::pooling mp;

1115
        mp.setup_avg_pooling(window_height,window_width,stride_y,stride_x,padding_y,padding_x);
1116
1117
1118
1119
1120
        mp(A, B);

        // make sure avg pooling does what it's spec says it should.
        DLIB_TEST( A.num_samples() == B.num_samples());
        DLIB_TEST( A.k() == B.k());
1121
1122
1123
1124
1125
        DLIB_TEST( A.nr() == 1+(B.nr()+2*padding_y-window_height)/stride_y);
        DLIB_TEST( A.nc() == 1+(B.nc()+2*padding_x-window_width)/stride_x);

        const long x_offset = window_width/2 - padding_x;
        const long y_offset = window_height/2 - padding_y;
1126
1127
1128
1129
1130
1131
1132
1133
1134
        for (long s = 0; s < A.num_samples(); ++s)
        {
            for (long k = 0; k < A.k(); ++k)
            {
                for (long r = 0; r < A.nr(); ++r)
                {
                    for (long c = 0; c < A.nc(); ++c)
                    {
                        float expected = mean(subm_clipped(image_plane(B,s,k),
1135
1136
                                            centered_rect(c*stride_x+x_offset,
                                                        r*stride_y+y_offset,
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
                                                        window_width,
                                                        window_height)));
                        float err = abs(image_plane(A,s,k)(r,c) - expected);
                        DLIB_TEST_MSG(err < 1e-5, err << "  " << expected << "  " << image_plane(A,s,k)(r,c));
                    }
                }
            }
        }
    }

Davis King's avatar
Davis King committed
1147
1148
// ----------------------------------------------------------------------------------------

Davis King's avatar
Davis King committed
1149
1150
    void test_layers()
    {
1151
1152
1153
1154
1155
        {
            print_spinner();
            multiply_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
Davis King's avatar
Davis King committed
1156
1157
        {
            print_spinner();
1158
            max_pool_<3,3,1,1> l;
Davis King's avatar
Davis King committed
1159
1160
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
1161
1162
        {
            print_spinner();
1163
            avg_pool_<3,3,1,1> l;
1164
1165
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
1166
1167
        {
            print_spinner();
1168
            affine_ l(CONV_MODE);
1169
1170
1171
1172
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1173
            affine_ l(FC_MODE);
1174
1175
1176
1177
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1178
            bn_<CONV_MODE> l;
1179
1180
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
Davis King's avatar
Davis King committed
1181
1182
        {
            print_spinner();
1183
            bn_<FC_MODE> l;
Davis King's avatar
Davis King committed
1184
1185
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
Davis King's avatar
Davis King committed
1186
1187
        {
            print_spinner();
1188
            con_<3,3,3,2,2> l;
Davis King's avatar
Davis King committed
1189
1190
1191
1192
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1193
            con_<3,3,3,1,1>l;
Davis King's avatar
Davis King committed
1194
1195
1196
1197
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1198
            con_<3,3,2,1,1> l;
Davis King's avatar
Davis King committed
1199
1200
1201
1202
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1203
            con_<2,1,1,1,1> l;
Davis King's avatar
Davis King committed
1204
1205
1206
1207
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1208
            fc_<1,FC_HAS_BIAS> l;
Davis King's avatar
Davis King committed
1209
1210
1211
1212
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1213
            fc_<5,FC_HAS_BIAS> l;
1214
1215
1216
1217
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
1218
            fc_<4,FC_NO_BIAS> l;
Davis King's avatar
Davis King committed
1219
1220
1221
1222
1223
1224
1225
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            relu_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
Davis King's avatar
Davis King committed
1226
1227
1228
1229
1230
        {
            print_spinner();
            prelu_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
Davis King's avatar
Davis King committed
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
        {
            print_spinner();
            sig_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            htan_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
        {
            print_spinner();
            softmax_ l;
            DLIB_TEST_MSG(test_layer(l), test_layer(l));
        }
    }

1248
1249
// ----------------------------------------------------------------------------------------

1250
    template <unsigned long n, typename SUBNET> using rcon = max_pool<2,2,2,2,relu<bn_con<con<n,5,5,1,1,SUBNET>>>>;
1251
    template <unsigned long n, typename SUBNET> using rfc = relu<bn_fc<fc<n,SUBNET>>>;
1252
1253
1254
1255

    void test_tagging(
    )
    {
1256
1257
1258
1259
        typedef loss_multiclass_log<rfc<10,skip1<rfc<84,rfc<120,tag1<rcon<16,rcon<6,input<matrix<unsigned char>>>>>>>>>> net_type;

        net_type net;
        net_type net2(num_fc_outputs(4));
1260

1261
1262
1263
1264
        DLIB_TEST(layer<tag1>(net).num_computational_layers == 8);
        DLIB_TEST(layer<skip1>(net).num_computational_layers == 8+3+3);
        DLIB_TEST(layer<tag1>(net).num_layers == 10);
        DLIB_TEST(layer<skip1>(net).num_layers == 10+3+3+1);
1265
1266
        DLIB_TEST(&layer<skip1>(net).get_output() == &layer<tag1>(net).get_output());
        DLIB_TEST(&layer<skip1>(net).get_output() != &layer<tag1>(net).subnet().subnet().get_output());
1267
1268
        DLIB_TEST(net.subnet().subnet().subnet().layer_details().get_num_outputs() == 10);
        DLIB_TEST(net2.subnet().subnet().subnet().layer_details().get_num_outputs() == 4);
1269
1270
1271
1272
    }

// ----------------------------------------------------------------------------------------

Davis King's avatar
Davis King committed
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
    class dnn_tester : public tester
    {
    public:
        dnn_tester (
        ) :
            tester ("test_dnn",
                "Runs tests on the deep neural network tools.")
        {}

        void perform_test (
        )
        {
1285
            test_tagging();
1286
#ifdef DLIB_USE_CUDA
1287
            test_conv();
1288
            test_more_ops2();
Davis King's avatar
Davis King committed
1289
1290
1291
1292
1293
1294
            test_more_ops(1,1);
            test_more_ops(3,4);
            test_more_ops(4,3);
            test_more_ops(4,1);
            test_more_ops(1,4);
            test_more_ops(10000,4);
1295
1296
            compare_bn_gpu_and_cpu();
            compare_bn_conv_gpu_and_cpu();
1297
            test_add();
Davis King's avatar
Davis King committed
1298
            compare_adam();
1299
#endif
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
            test_max_pool(1,1,2,3,0,0);
            test_max_pool(3,3,1,1,0,0);
            test_max_pool(3,3,2,2,0,0);
            test_max_pool(2,2,2,2,0,0);
            test_max_pool(4,5,3,1,0,0);
            test_avg_pool(1,1,2,3,0,0);
            test_avg_pool(3,3,1,1,0,0);
            test_avg_pool(3,3,2,2,0,0);
            test_avg_pool(2,2,2,2,0,0);
            test_avg_pool(4,5,3,1,0,0);
            test_avg_pool(4,4,2,2,0,0);
            test_avg_pool(4,5,40,50,0,0);
            test_max_pool(2,2,2,3,1,1);
            test_max_pool(3,3,1,1,1,1);
            test_max_pool(3,3,2,2,2,1);
            test_max_pool(2,2,2,2,1,0);
            test_max_pool(4,5,3,1,2,3);
            test_avg_pool(1,1,2,3,0,0);
            test_avg_pool(3,3,1,1,1,2);
            test_avg_pool(3,3,2,2,2,1);
            test_avg_pool(2,2,2,2,1,0);
            test_avg_pool(4,5,3,1,2,4);
            test_avg_pool(4,4,2,2,1,3);
            test_avg_pool(4,5,40,50,0,1);
Davis King's avatar
Davis King committed
1324
            test_tanh();
1325
            test_softmax();
1326
            test_sigmoid();
Davis King's avatar
Davis King committed
1327
1328
            test_batch_normalize();
            test_batch_normalize_conv();
1329
            test_basic_tensor_ops();
Davis King's avatar
Davis King committed
1330
            test_layers();
Davis King's avatar
Davis King committed
1331
1332
1333
1334
1335
1336
        }
    } a;

}