layers.h 77.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_DNn_LAYERS_H_
#define DLIB_DNn_LAYERS_H_

#include "layers_abstract.h"
#include "tensor.h"
#include "core.h"
#include <iostream>
#include <string>
Davis King's avatar
Davis King committed
11
12
#include "../rand.h"
#include "../string.h"
13
#include "tensor_tools.h"
14
#include "../vectorstream.h"
15
#include "utilities.h"
16
17
18
19
20
21
22


namespace dlib
{

// ----------------------------------------------------------------------------------------

23
24
25
26
27
    template <
        long _num_filters,
        long _nr,
        long _nc,
        int _stride_y,
28
29
30
        int _stride_x,
        int _padding_y = _stride_y!=1? 0 : _nr/2,
        int _padding_x = _stride_x!=1? 0 : _nc/2
31
        >
32
33
34
    class con_
    {
    public:
35

36
37
38
39
40
        static_assert(_num_filters > 0, "The number of filters must be > 0");
        static_assert(_nr > 0, "The number of rows in a filter must be > 0");
        static_assert(_nc > 0, "The number of columns in a filter must be > 0");
        static_assert(_stride_y > 0, "The filter stride must be > 0");
        static_assert(_stride_x > 0, "The filter stride must be > 0");
41
42
        static_assert(0 <= _padding_y && _padding_y < _nr, "The padding must be smaller than the filter size.");
        static_assert(0 <= _padding_x && _padding_x < _nc, "The padding must be smaller than the filter size.");
43

Davis King's avatar
Davis King committed
44
        con_(
45
        ) : 
46
47
48
49
            learning_rate_multiplier(1),
            weight_decay_multiplier(1),
            bias_learning_rate_multiplier(1),
            bias_weight_decay_multiplier(0),
50
51
            padding_y_(_padding_y),
            padding_x_(_padding_x)
52
53
        {}

54
55
56
57
58
        long num_filters() const { return _num_filters; }
        long nr() const { return _nr; }
        long nc() const { return _nc; }
        long stride_y() const { return _stride_y; }
        long stride_x() const { return _stride_x; }
59
60
        long padding_y() const { return padding_y_; }
        long padding_x() const { return padding_x_; }
61

62
63
64
65
66
67
68
69
70
71
        double get_learning_rate_multiplier () const  { return learning_rate_multiplier; }
        double get_weight_decay_multiplier () const   { return weight_decay_multiplier; }
        void set_learning_rate_multiplier(double val) { learning_rate_multiplier = val; }
        void set_weight_decay_multiplier(double val)  { weight_decay_multiplier  = val; }

        double get_bias_learning_rate_multiplier () const  { return bias_learning_rate_multiplier; }
        double get_bias_weight_decay_multiplier () const   { return bias_weight_decay_multiplier; }
        void set_bias_learning_rate_multiplier(double val) { bias_learning_rate_multiplier = val; }
        void set_bias_weight_decay_multiplier(double val)  { bias_weight_decay_multiplier  = val; }

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        inline point map_input_to_output (
            point p
        ) const
        {
            p.x() = (p.x()+padding_x()-nc()/2)/stride_x();
            p.y() = (p.y()+padding_y()-nr()/2)/stride_y();
            return p;
        }

        inline point map_output_to_input (
            point p
        ) const
        {
            p.x() = p.x()*stride_x() - padding_x() + nc()/2;
            p.y() = p.y()*stride_y() - padding_y() + nr()/2;
            return p;
        }
89

Davis King's avatar
Davis King committed
90
91
92
93
94
        con_ (
            const con_& item
        ) : 
            params(item.params),
            filters(item.filters),
95
            biases(item.biases),
96
97
98
99
            learning_rate_multiplier(item.learning_rate_multiplier),
            weight_decay_multiplier(item.weight_decay_multiplier),
            bias_learning_rate_multiplier(item.bias_learning_rate_multiplier),
            bias_weight_decay_multiplier(item.bias_weight_decay_multiplier),
100
101
            padding_y_(item.padding_y_),
            padding_x_(item.padding_x_)
Davis King's avatar
Davis King committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        {
            // this->conv is non-copyable and basically stateless, so we have to write our
            // own copy to avoid trying to copy it and getting an error.
        }

        con_& operator= (
            const con_& item
        )
        {
            if (this == &item)
                return *this;

            // this->conv is non-copyable and basically stateless, so we have to write our
            // own copy to avoid trying to copy it and getting an error.
            params = item.params;
            filters = item.filters;
            biases = item.biases;
119
120
            padding_y_ = item.padding_y_;
            padding_x_ = item.padding_x_;
121
122
123
124
            learning_rate_multiplier = item.learning_rate_multiplier;
            weight_decay_multiplier = item.weight_decay_multiplier;
            bias_learning_rate_multiplier = item.bias_learning_rate_multiplier;
            bias_weight_decay_multiplier = item.bias_weight_decay_multiplier;
Davis King's avatar
Davis King committed
125
126
127
            return *this;
        }

Davis King's avatar
Davis King committed
128
129
        template <typename SUBNET>
        void setup (const SUBNET& sub)
130
        {
131
132
            long num_inputs = _nr*_nc*sub.get_output().k();
            long num_outputs = _num_filters;
Davis King's avatar
Davis King committed
133
            // allocate params for the filters and also for the filter bias values.
134
            params.set_size(num_inputs*_num_filters + _num_filters);
Davis King's avatar
Davis King committed
135

136
            dlib::rand rnd(std::rand());
Davis King's avatar
Davis King committed
137
138
            randomize_parameters(params, num_inputs+num_outputs, rnd);

139
140
            filters = alias_tensor(_num_filters, sub.get_output().k(), _nr, _nc);
            biases = alias_tensor(1,_num_filters);
Davis King's avatar
Davis King committed
141
142
143

            // set the initial bias values to zero
            biases(params,filters.size()) = 0;
144
145
        }

Davis King's avatar
Davis King committed
146
147
        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
148
        {
Davis King's avatar
Davis King committed
149
150
151
            conv(output,
                sub.get_output(),
                filters(params,0),
152
                _stride_y,
153
                _stride_x,
154
155
                padding_y_,
                padding_x_
156
                );
Davis King's avatar
Davis King committed
157
158

            tt::add(1,output,1,biases(params,filters.size()));
159
160
        } 

Davis King's avatar
Davis King committed
161
        template <typename SUBNET>
162
        void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
163
        {
Davis King's avatar
Davis King committed
164
            conv.get_gradient_for_data (gradient_input, filters(params,0), sub.get_gradient_input());
165
166
167
168
169
170
171
172
            // no point computing the parameter gradients if they won't be used.
            if (learning_rate_multiplier != 0)
            {
                auto filt = filters(params_grad,0);
                conv.get_gradient_for_filters (gradient_input, sub.get_output(), filt);
                auto b = biases(params_grad, filters.size());
                tt::assign_conv_bias_gradient(b, gradient_input);
            }
173
174
175
176
177
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

Davis King's avatar
Davis King committed
178
179
        friend void serialize(const con_& item, std::ostream& out)
        {
180
            serialize("con_4", out);
Davis King's avatar
Davis King committed
181
            serialize(item.params, out);
182
183
184
185
186
            serialize(_num_filters, out);
            serialize(_nr, out);
            serialize(_nc, out);
            serialize(_stride_y, out);
            serialize(_stride_x, out);
187
188
            serialize(item.padding_y_, out);
            serialize(item.padding_x_, out);
Davis King's avatar
Davis King committed
189
190
            serialize(item.filters, out);
            serialize(item.biases, out);
191
192
193
194
            serialize(item.learning_rate_multiplier, out);
            serialize(item.weight_decay_multiplier, out);
            serialize(item.bias_learning_rate_multiplier, out);
            serialize(item.bias_weight_decay_multiplier, out);
Davis King's avatar
Davis King committed
195
196
197
198
199
200
        }

        friend void deserialize(con_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
201
202
203
204
205
            long num_filters;
            long nr;
            long nc;
            int stride_y;
            int stride_x;
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
            if (version == "con_4")
            {
                deserialize(item.params, in);
                deserialize(num_filters, in);
                deserialize(nr, in);
                deserialize(nc, in);
                deserialize(stride_y, in);
                deserialize(stride_x, in);
                deserialize(item.padding_y_, in);
                deserialize(item.padding_x_, in);
                deserialize(item.filters, in);
                deserialize(item.biases, in);
                deserialize(item.learning_rate_multiplier, in);
                deserialize(item.weight_decay_multiplier, in);
                deserialize(item.bias_learning_rate_multiplier, in);
                deserialize(item.bias_weight_decay_multiplier, in);
                if (item.padding_y_ != _padding_y) throw serialization_error("Wrong padding_y found while deserializing dlib::con_");
                if (item.padding_x_ != _padding_x) throw serialization_error("Wrong padding_x found while deserializing dlib::con_");
                if (num_filters != _num_filters) throw serialization_error("Wrong num_filters found while deserializing dlib::con_");
                if (nr != _nr) throw serialization_error("Wrong nr found while deserializing dlib::con_");
                if (nc != _nc) throw serialization_error("Wrong nc found while deserializing dlib::con_");
                if (stride_y != _stride_y) throw serialization_error("Wrong stride_y found while deserializing dlib::con_");
                if (stride_x != _stride_x) throw serialization_error("Wrong stride_x found while deserializing dlib::con_");
229
230
231
232
233
            }
            else
            {
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::con_.");
            }
Davis King's avatar
Davis King committed
234
235
        }

236
237
238
239
240
241
242
243
244

        friend std::ostream& operator<<(std::ostream& out, const con_& item)
        {
            out << "con\t ("
                << "num_filters="<<_num_filters
                << ", nr="<<_nr
                << ", nc="<<_nc
                << ", stride_y="<<_stride_y
                << ", stride_x="<<_stride_x
245
246
                << ", padding_y="<<item.padding_y_
                << ", padding_x="<<item.padding_x_
247
                << ")";
248
249
250
251
            out << " learning_rate_mult="<<item.learning_rate_multiplier;
            out << " weight_decay_mult="<<item.weight_decay_multiplier;
            out << " bias_learning_rate_mult="<<item.bias_learning_rate_multiplier;
            out << " bias_weight_decay_mult="<<item.bias_weight_decay_multiplier;
252
253
254
            return out;
        }

Davis King's avatar
Davis King committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        friend void to_xml(const con_& item, std::ostream& out)
        {
            out << "<con"
                << " num_filters='"<<_num_filters<<"'"
                << " nr='"<<_nr<<"'"
                << " nc='"<<_nc<<"'"
                << " stride_y='"<<_stride_y<<"'"
                << " stride_x='"<<_stride_x<<"'"
                << " padding_y='"<<item.padding_y_<<"'"
                << " padding_x='"<<item.padding_x_<<"'"
                << " learning_rate_mult='"<<item.learning_rate_multiplier<<"'"
                << " weight_decay_mult='"<<item.weight_decay_multiplier<<"'"
                << " bias_learning_rate_mult='"<<item.bias_learning_rate_multiplier<<"'"
                << " bias_weight_decay_mult='"<<item.bias_weight_decay_multiplier<<"'>\n";
            out << mat(item.params);
            out << "</con>";
        }
272

273
274
275
    private:

        resizable_tensor params;
Davis King's avatar
Davis King committed
276
277
278
        alias_tensor filters, biases;

        tt::tensor_conv conv;
279
280
281
282
        double learning_rate_multiplier;
        double weight_decay_multiplier;
        double bias_learning_rate_multiplier;
        double bias_weight_decay_multiplier;
Davis King's avatar
Davis King committed
283

284
285
286
287
288
        // These are here only because older versions of con (which you might encounter
        // serialized to disk) used different padding settings.
        int padding_y_;
        int padding_x_;

289
290
    };

291
292
293
294
295
296
297
298
299
    template <
        long num_filters,
        long nr,
        long nc,
        int stride_y,
        int stride_x,
        typename SUBNET
        >
    using con = add_layer<con_<num_filters,nr,nc,stride_y,stride_x>, SUBNET>;
300

Davis King's avatar
Davis King committed
301
302
// ----------------------------------------------------------------------------------------

303
304
305
306
    template <
        long _nr,
        long _nc,
        int _stride_y,
307
308
309
        int _stride_x,
        int _padding_y = _stride_y!=1? 0 : _nr/2,
        int _padding_x = _stride_x!=1? 0 : _nc/2
310
        >
Davis King's avatar
Davis King committed
311
312
    class max_pool_
    {
313
314
        static_assert(_nr >= 0, "The number of rows in a filter must be >= 0");
        static_assert(_nc >= 0, "The number of columns in a filter must be >= 0");
315
316
        static_assert(_stride_y > 0, "The filter stride must be > 0");
        static_assert(_stride_x > 0, "The filter stride must be > 0");
Davis King's avatar
Davis King committed
317
        static_assert(0 <= _padding_y && ((_nr==0 && _padding_y == 0) || (_nr!=0 && _padding_y < _nr)), 
318
            "The padding must be smaller than the filter size, unless the filters size is 0.");
Davis King's avatar
Davis King committed
319
        static_assert(0 <= _padding_x && ((_nc==0 && _padding_x == 0) || (_nc!=0 && _padding_x < _nc)), 
320
            "The padding must be smaller than the filter size, unless the filters size is 0.");
Davis King's avatar
Davis King committed
321
322
323
324
    public:


        max_pool_(
325
326
327
328
        ) :
            padding_y_(_padding_y),
            padding_x_(_padding_x)
        {}
Davis King's avatar
Davis King committed
329
330
331
332
333

        long nr() const { return _nr; }
        long nc() const { return _nc; }
        long stride_y() const { return _stride_y; }
        long stride_x() const { return _stride_x; }
334
335
        long padding_y() const { return padding_y_; }
        long padding_x() const { return padding_x_; }
Davis King's avatar
Davis King committed
336

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
        inline point map_input_to_output (
            point p
        ) const
        {
            p.x() = (p.x()+padding_x()-nc()/2)/stride_x();
            p.y() = (p.y()+padding_y()-nr()/2)/stride_y();
            return p;
        }

        inline point map_output_to_input (
            point p
        ) const
        {
            p.x() = p.x()*stride_x() - padding_x() + nc()/2;
            p.y() = p.y()*stride_y() - padding_y() + nr()/2;
            return p;
        }

Davis King's avatar
Davis King committed
355
        max_pool_ (
356
357
358
359
            const max_pool_& item
        )  :
            padding_y_(item.padding_y_),
            padding_x_(item.padding_x_)
Davis King's avatar
Davis King committed
360
361
362
363
364
365
366
367
368
369
370
371
        {
            // this->mp is non-copyable so we have to write our own copy to avoid trying to
            // copy it and getting an error.
        }

        max_pool_& operator= (
            const max_pool_& item
        )
        {
            if (this == &item)
                return *this;

372
373
374
            padding_y_ = item.padding_y_;
            padding_x_ = item.padding_x_;

Davis King's avatar
Davis King committed
375
376
377
378
379
380
381
382
383
384
385
386
387
            // this->mp is non-copyable so we have to write our own copy to avoid trying to
            // copy it and getting an error.
            return *this;
        }

        template <typename SUBNET>
        void setup (const SUBNET& /*sub*/)
        {
        }

        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
        {
388
            mp.setup_max_pooling(_nr!=0?_nr:sub.get_output().nr(), 
389
390
391
                                 _nc!=0?_nc:sub.get_output().nc(),
                                 _stride_y, _stride_x, padding_y_, padding_x_);

Davis King's avatar
Davis King committed
392
393
394
395
396
397
            mp(output, sub.get_output());
        } 

        template <typename SUBNET>
        void backward(const tensor& computed_output, const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
        {
398
            mp.setup_max_pooling(_nr!=0?_nr:sub.get_output().nr(), 
399
400
401
                                 _nc!=0?_nc:sub.get_output().nc(),
                                 _stride_y, _stride_x, padding_y_, padding_x_);

Davis King's avatar
Davis King committed
402
403
404
405
406
407
408
409
            mp.get_gradient(gradient_input, computed_output, sub.get_output(), sub.get_gradient_input());
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const max_pool_& item, std::ostream& out)
        {
410
            serialize("max_pool_2", out);
411
412
413
414
            serialize(_nr, out);
            serialize(_nc, out);
            serialize(_stride_y, out);
            serialize(_stride_x, out);
415
416
            serialize(item.padding_y_, out);
            serialize(item.padding_x_, out);
Davis King's avatar
Davis King committed
417
418
419
420
421
422
        }

        friend void deserialize(max_pool_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
423
424
425
426
            long nr;
            long nc;
            int stride_y;
            int stride_x;
427
            if (version == "max_pool_2")
428
429
430
431
432
433
434
435
436
437
438
439
            {
                deserialize(nr, in);
                deserialize(nc, in);
                deserialize(stride_y, in);
                deserialize(stride_x, in);
                deserialize(item.padding_y_, in);
                deserialize(item.padding_x_, in);
            }
            else
            {
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::max_pool_.");
            }
440

441
442
            if (item.padding_y_ != _padding_y) throw serialization_error("Wrong padding_y found while deserializing dlib::max_pool_");
            if (item.padding_x_ != _padding_x) throw serialization_error("Wrong padding_x found while deserializing dlib::max_pool_");
443
444
445
446
            if (_nr != nr) throw serialization_error("Wrong nr found while deserializing dlib::max_pool_");
            if (_nc != nc) throw serialization_error("Wrong nc found while deserializing dlib::max_pool_");
            if (_stride_y != stride_y) throw serialization_error("Wrong stride_y found while deserializing dlib::max_pool_");
            if (_stride_x != stride_x) throw serialization_error("Wrong stride_x found while deserializing dlib::max_pool_");
Davis King's avatar
Davis King committed
447
448
        }

449
450
451
452
453
454
455
        friend std::ostream& operator<<(std::ostream& out, const max_pool_& item)
        {
            out << "max_pool ("
                << "nr="<<_nr
                << ", nc="<<_nc
                << ", stride_y="<<_stride_y
                << ", stride_x="<<_stride_x
456
457
                << ", padding_y="<<item.padding_y_
                << ", padding_x="<<item.padding_x_
458
459
460
461
                << ")";
            return out;
        }

Davis King's avatar
Davis King committed
462
463
464
465
466
467
468
469
470
471
472
473
        friend void to_xml(const max_pool_& item, std::ostream& out)
        {
            out << "<max_pool"
                << " nr='"<<_nr<<"'"
                << " nc='"<<_nc<<"'"
                << " stride_y='"<<_stride_y<<"'"
                << " stride_x='"<<_stride_x<<"'"
                << " padding_y='"<<item.padding_y_<<"'"
                << " padding_x='"<<item.padding_x_<<"'"
                << "/>\n";
        }

474

Davis King's avatar
Davis King committed
475
476
477
    private:


478
        tt::pooling mp;
Davis King's avatar
Davis King committed
479
        resizable_tensor params;
480
481
482

        int padding_y_;
        int padding_x_;
Davis King's avatar
Davis King committed
483
484
    };

485
486
487
488
489
490
491
492
    template <
        long nr,
        long nc,
        int stride_y,
        int stride_x,
        typename SUBNET
        >
    using max_pool = add_layer<max_pool_<nr,nc,stride_y,stride_x>, SUBNET>;
Davis King's avatar
Davis King committed
493

494
495
496
497
498
    template <
        typename SUBNET
        >
    using max_pool_everything = add_layer<max_pool_<0,0,1,1>, SUBNET>;

499
500
// ----------------------------------------------------------------------------------------

501
502
503
504
    template <
        long _nr,
        long _nc,
        int _stride_y,
505
506
507
        int _stride_x,
        int _padding_y = _stride_y!=1? 0 : _nr/2,
        int _padding_x = _stride_x!=1? 0 : _nc/2
508
        >
509
510
511
    class avg_pool_
    {
    public:
512
513
        static_assert(_nr >= 0, "The number of rows in a filter must be >= 0");
        static_assert(_nc >= 0, "The number of columns in a filter must be >= 0");
514
515
        static_assert(_stride_y > 0, "The filter stride must be > 0");
        static_assert(_stride_x > 0, "The filter stride must be > 0");
Davis King's avatar
Davis King committed
516
        static_assert(0 <= _padding_y && ((_nr==0 && _padding_y == 0) || (_nr!=0 && _padding_y < _nr)), 
517
            "The padding must be smaller than the filter size, unless the filters size is 0.");
Davis King's avatar
Davis King committed
518
        static_assert(0 <= _padding_x && ((_nc==0 && _padding_x == 0) || (_nc!=0 && _padding_x < _nc)), 
519
            "The padding must be smaller than the filter size, unless the filters size is 0.");
520
521

        avg_pool_(
522
523
524
525
        ) :
            padding_y_(_padding_y),
            padding_x_(_padding_x)
        {}
526
527
528
529
530

        long nr() const { return _nr; }
        long nc() const { return _nc; }
        long stride_y() const { return _stride_y; }
        long stride_x() const { return _stride_x; }
531
532
        long padding_y() const { return padding_y_; }
        long padding_x() const { return padding_x_; }
533

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
        inline point map_input_to_output (
            point p
        ) const
        {
            p.x() = (p.x()+padding_x()-nc()/2)/stride_x();
            p.y() = (p.y()+padding_y()-nr()/2)/stride_y();
            return p;
        }

        inline point map_output_to_input (
            point p
        ) const
        {
            p.x() = p.x()*stride_x() - padding_x() + nc()/2;
            p.y() = p.y()*stride_y() - padding_y() + nr()/2;
            return p;
        }

552
        avg_pool_ (
553
554
555
556
            const avg_pool_& item
        )  :
            padding_y_(item.padding_y_),
            padding_x_(item.padding_x_)
557
558
559
560
561
562
563
564
565
566
567
568
        {
            // this->ap is non-copyable so we have to write our own copy to avoid trying to
            // copy it and getting an error.
        }

        avg_pool_& operator= (
            const avg_pool_& item
        )
        {
            if (this == &item)
                return *this;

569
570
571
            padding_y_ = item.padding_y_;
            padding_x_ = item.padding_x_;

572
573
574
575
576
577
578
579
580
581
582
583
584
            // this->ap is non-copyable so we have to write our own copy to avoid trying to
            // copy it and getting an error.
            return *this;
        }

        template <typename SUBNET>
        void setup (const SUBNET& /*sub*/)
        {
        }

        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
        {
585
586
587
588
            ap.setup_avg_pooling(_nr!=0?_nr:sub.get_output().nr(), 
                                 _nc!=0?_nc:sub.get_output().nc(),
                                 _stride_y, _stride_x, padding_y_, padding_x_);

589
590
591
592
593
594
            ap(output, sub.get_output());
        } 

        template <typename SUBNET>
        void backward(const tensor& computed_output, const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
        {
595
596
597
598
            ap.setup_avg_pooling(_nr!=0?_nr:sub.get_output().nr(), 
                                 _nc!=0?_nc:sub.get_output().nc(),
                                 _stride_y, _stride_x, padding_y_, padding_x_);

599
600
601
602
603
604
605
606
            ap.get_gradient(gradient_input, computed_output, sub.get_output(), sub.get_gradient_input());
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const avg_pool_& item, std::ostream& out)
        {
607
            serialize("avg_pool_2", out);
608
609
610
611
            serialize(_nr, out);
            serialize(_nc, out);
            serialize(_stride_y, out);
            serialize(_stride_x, out);
612
613
            serialize(item.padding_y_, out);
            serialize(item.padding_x_, out);
614
615
616
617
618
619
        }

        friend void deserialize(avg_pool_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
620
621
622
623
624

            long nr;
            long nc;
            int stride_y;
            int stride_x;
625
            if (version == "avg_pool_2")
626
627
628
629
630
631
632
633
634
635
636
637
            {
                deserialize(nr, in);
                deserialize(nc, in);
                deserialize(stride_y, in);
                deserialize(stride_x, in);
                deserialize(item.padding_y_, in);
                deserialize(item.padding_x_, in);
            }
            else
            {
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::avg_pool_.");
            }
638

639
640
            if (item.padding_y_ != _padding_y) throw serialization_error("Wrong padding_y found while deserializing dlib::avg_pool_");
            if (item.padding_x_ != _padding_x) throw serialization_error("Wrong padding_x found while deserializing dlib::avg_pool_");
641
642
643
644
            if (_nr != nr) throw serialization_error("Wrong nr found while deserializing dlib::avg_pool_");
            if (_nc != nc) throw serialization_error("Wrong nc found while deserializing dlib::avg_pool_");
            if (_stride_y != stride_y) throw serialization_error("Wrong stride_y found while deserializing dlib::avg_pool_");
            if (_stride_x != stride_x) throw serialization_error("Wrong stride_x found while deserializing dlib::avg_pool_");
645
646
        }

647
648
649
650
651
652
653
        friend std::ostream& operator<<(std::ostream& out, const avg_pool_& item)
        {
            out << "avg_pool ("
                << "nr="<<_nr
                << ", nc="<<_nc
                << ", stride_y="<<_stride_y
                << ", stride_x="<<_stride_x
654
655
                << ", padding_y="<<item.padding_y_
                << ", padding_x="<<item.padding_x_
656
657
658
                << ")";
            return out;
        }
Davis King's avatar
Davis King committed
659
660
661
662
663
664
665
666
667
668
669
670

        friend void to_xml(const avg_pool_& item, std::ostream& out)
        {
            out << "<avg_pool"
                << " nr='"<<_nr<<"'"
                << " nc='"<<_nc<<"'"
                << " stride_y='"<<_stride_y<<"'"
                << " stride_x='"<<_stride_x<<"'"
                << " padding_y='"<<item.padding_y_<<"'"
                << " padding_x='"<<item.padding_x_<<"'"
                << "/>\n";
        }
671
672
673
674
    private:

        tt::pooling ap;
        resizable_tensor params;
675
676
677

        int padding_y_;
        int padding_x_;
678
679
    };

680
681
682
683
684
685
686
687
    template <
        long nr,
        long nc,
        int stride_y,
        int stride_x,
        typename SUBNET
        >
    using avg_pool = add_layer<avg_pool_<nr,nc,stride_y,stride_x>, SUBNET>;
688

689
690
691
692
693
    template <
        typename SUBNET
        >
    using avg_pool_everything = add_layer<avg_pool_<0,0,1,1>, SUBNET>;

694
695
// ----------------------------------------------------------------------------------------

696
    enum layer_mode
697
    {
698
699
        CONV_MODE = 0,
        FC_MODE = 1
700
701
    };

702
703
    const double DEFAULT_BATCH_NORM_EPS = 0.00001;

704
705
706
    template <
        layer_mode mode
        >
707
708
709
    class bn_
    {
    public:
710
711
712
713
        explicit bn_(
            unsigned long window_size,
            double eps_ = DEFAULT_BATCH_NORM_EPS
        ) : 
714
715
716
            num_updates(0), 
            running_stats_window_size(window_size),
            learning_rate_multiplier(1),
717
            weight_decay_multiplier(0),
718
719
            bias_learning_rate_multiplier(1),
            bias_weight_decay_multiplier(1),
720
            eps(eps_)
721
722
723
        {
            DLIB_CASSERT(window_size > 0, "The batch normalization running stats window size can't be 0.");
        }
724

725
        bn_() : bn_(100) {}
726
727
728

        layer_mode get_mode() const { return mode; }
        unsigned long get_running_stats_window_size () const { return running_stats_window_size; }
729
730
731
732
733
        void set_running_stats_window_size (unsigned long new_window_size ) 
        { 
            DLIB_CASSERT(new_window_size > 0, "The batch normalization running stats window size can't be 0.");
            running_stats_window_size = new_window_size; 
        }
734
        double get_eps() const { return eps; }
735

736
737
738
739
740
        double get_learning_rate_multiplier () const  { return learning_rate_multiplier; }
        double get_weight_decay_multiplier () const   { return weight_decay_multiplier; }
        void set_learning_rate_multiplier(double val) { learning_rate_multiplier = val; }
        void set_weight_decay_multiplier(double val)  { weight_decay_multiplier  = val; }

741
742
743
744
745
        double get_bias_learning_rate_multiplier () const  { return bias_learning_rate_multiplier; }
        double get_bias_weight_decay_multiplier () const   { return bias_weight_decay_multiplier; }
        void set_bias_learning_rate_multiplier(double val) { bias_learning_rate_multiplier = val; }
        void set_bias_weight_decay_multiplier(double val)  { bias_weight_decay_multiplier  = val; }

746
747
748
        inline point map_input_to_output (const point& p) const { return p; }
        inline point map_output_to_input (const point& p) const { return p; }

749

750
751
752
        template <typename SUBNET>
        void setup (const SUBNET& sub)
        {
753
            if (mode == FC_MODE)
754
755
756
757
758
759
760
761
762
763
            {
                gamma = alias_tensor(1,
                                sub.get_output().k(),
                                sub.get_output().nr(),
                                sub.get_output().nc());
            }
            else
            {
                gamma = alias_tensor(1, sub.get_output().k());
            }
Davis King's avatar
Davis King committed
764
765
766
767
768
769
            beta = gamma;

            params.set_size(gamma.size()+beta.size());

            gamma(params,0) = 1;
            beta(params,gamma.size()) = 0;
770

771
            running_means.copy_size(gamma(params,0));
772
            running_variances.copy_size(gamma(params,0));
773
            running_means = 0;
774
            running_variances = 1;
775
            num_updates = 0;
776
777
778
779
780
        }

        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
        {
Davis King's avatar
Davis King committed
781
782
            auto g = gamma(params,0);
            auto b = beta(params,gamma.size());
783
784
            if (sub.get_output().num_samples() > 1)
            {
785
                const double decay = 1.0 - num_updates/(num_updates+1.0);
786
787
788
789
                ++num_updates;
                if (num_updates > running_stats_window_size)
                    num_updates = running_stats_window_size;

790
                if (mode == FC_MODE)
791
                    tt::batch_normalize(eps, output, means, invstds, decay, running_means, running_variances, sub.get_output(), g, b);
792
                else 
793
                    tt::batch_normalize_conv(eps, output, means, invstds, decay, running_means, running_variances, sub.get_output(), g, b);
794
795
796
            }
            else // we are running in testing mode so we just linearly scale the input tensor.
            {
797
                if (mode == FC_MODE)
798
                    tt::batch_normalize_inference(eps, output, sub.get_output(), g, b, running_means, running_variances);
799
                else
800
                    tt::batch_normalize_conv_inference(eps, output, sub.get_output(), g, b, running_means, running_variances);
801
            }
802
803
804
805
806
        } 

        template <typename SUBNET>
        void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
        {
Davis King's avatar
Davis King committed
807
808
809
            auto g = gamma(params,0);
            auto g_grad = gamma(params_grad, 0);
            auto b_grad = beta(params_grad, gamma.size());
810
            if (mode == FC_MODE)
811
                tt::batch_normalize_gradient(eps, gradient_input, means, invstds, sub.get_output(), g, sub.get_gradient_input(), g_grad, b_grad );
812
            else
813
                tt::batch_normalize_conv_gradient(eps, gradient_input, means, invstds, sub.get_output(), g, sub.get_gradient_input(), g_grad, b_grad );
814
815
816
817
818
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

Davis King's avatar
Davis King committed
819
820
        friend void serialize(const bn_& item, std::ostream& out)
        {
821
            if (mode == CONV_MODE)
822
                serialize("bn_con2", out);
823
            else // if FC_MODE
824
                serialize("bn_fc2", out);
Davis King's avatar
Davis King committed
825
826
827
828
829
            serialize(item.params, out);
            serialize(item.gamma, out);
            serialize(item.beta, out);
            serialize(item.means, out);
            serialize(item.invstds, out);
830
            serialize(item.running_means, out);
831
            serialize(item.running_variances, out);
832
833
            serialize(item.num_updates, out);
            serialize(item.running_stats_window_size, out);
834
835
            serialize(item.learning_rate_multiplier, out);
            serialize(item.weight_decay_multiplier, out);
836
837
            serialize(item.bias_learning_rate_multiplier, out);
            serialize(item.bias_weight_decay_multiplier, out);
838
            serialize(item.eps, out);
Davis King's avatar
Davis King committed
839
840
841
842
843
844
        }

        friend void deserialize(bn_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
845
            if (mode == CONV_MODE) 
846
            {
847
848
849
850
851
852
853
                if (version != "bn_con2")
                    throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::bn_.");
            }
            else // must be in FC_MODE
            {
                if (version != "bn_fc2")
                    throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::bn_.");
854
855
            }

Davis King's avatar
Davis King committed
856
857
858
859
860
            deserialize(item.params, in);
            deserialize(item.gamma, in);
            deserialize(item.beta, in);
            deserialize(item.means, in);
            deserialize(item.invstds, in);
861
            deserialize(item.running_means, in);
862
            deserialize(item.running_variances, in);
863
864
            deserialize(item.num_updates, in);
            deserialize(item.running_stats_window_size, in);
865
866
867
868
869
            deserialize(item.learning_rate_multiplier, in);
            deserialize(item.weight_decay_multiplier, in);
            deserialize(item.bias_learning_rate_multiplier, in);
            deserialize(item.bias_weight_decay_multiplier, in);
            deserialize(item.eps, in);
Davis King's avatar
Davis King committed
870
871
        }

872
873
874
        friend std::ostream& operator<<(std::ostream& out, const bn_& item)
        {
            if (mode == CONV_MODE)
875
                out << "bn_con  ";
876
            else
877
                out << "bn_fc   ";
878
            out << " eps="<<item.eps;
879
            out << " running_stats_window_size="<<item.running_stats_window_size;
880
881
            out << " learning_rate_mult="<<item.learning_rate_multiplier;
            out << " weight_decay_mult="<<item.weight_decay_multiplier;
882
883
            out << " bias_learning_rate_mult="<<item.bias_learning_rate_multiplier;
            out << " bias_weight_decay_mult="<<item.bias_weight_decay_multiplier;
884
885
886
            return out;
        }

Davis King's avatar
Davis King committed
887
888
889
890
891
892
893
894
        friend void to_xml(const bn_& item, std::ostream& out)
        {
            if (mode==CONV_MODE)
                out << "<bn_con";
            else
                out << "<bn_fc";

            out << " eps='"<<item.eps<<"'";
895
            out << " running_stats_window_size='"<<item.running_stats_window_size<<"'";
Davis King's avatar
Davis King committed
896
897
898
899
900
901
902
903
904
905
906
907
908
909
            out << " learning_rate_mult='"<<item.learning_rate_multiplier<<"'";
            out << " weight_decay_mult='"<<item.weight_decay_multiplier<<"'";
            out << " bias_learning_rate_mult='"<<item.bias_learning_rate_multiplier<<"'";
            out << " bias_weight_decay_mult='"<<item.bias_weight_decay_multiplier<<"'";
            out << ">\n";

            out << mat(item.params);

            if (mode==CONV_MODE)
                out << "</bn_con>\n";
            else
                out << "</bn_fc>\n";
        }

910
911
    private:

912
913
        friend class affine_;

914
        resizable_tensor params;
Davis King's avatar
Davis King committed
915
        alias_tensor gamma, beta;
916
        resizable_tensor means, running_means;
917
        resizable_tensor invstds, running_variances;
918
919
        unsigned long num_updates;
        unsigned long running_stats_window_size;
920
921
        double learning_rate_multiplier;
        double weight_decay_multiplier;
922
923
        double bias_learning_rate_multiplier;
        double bias_weight_decay_multiplier;
924
        double eps;
925
926
927
    };

    template <typename SUBNET>
928
929
930
    using bn_con = add_layer<bn_<CONV_MODE>, SUBNET>;
    template <typename SUBNET>
    using bn_fc = add_layer<bn_<FC_MODE>, SUBNET>;
931

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
// ----------------------------------------------------------------------------------------

    namespace impl
    {
        class visitor_bn_running_stats_window_size
        {
        public:

            visitor_bn_running_stats_window_size(unsigned long new_window_size_) : new_window_size(new_window_size_) {}

            template <typename T>
            void set_window_size(T&) const
            {
                // ignore other layer detail types
            }

            template < layer_mode mode >
            void set_window_size(bn_<mode>& l) const
            {
                l.set_running_stats_window_size(new_window_size);
            }

            template<typename input_layer_type>
            void operator()(size_t , input_layer_type& )  const
            {
                // ignore other layers
            }

            template <typename T, typename U, typename E>
            void operator()(size_t , add_layer<T,U,E>& l)  const
            {
                set_window_size(l.layer_details());
            }

        private:

            unsigned long new_window_size;
        };
    }

    template <typename net_type>
    void set_all_bn_running_stats_window_sizes (
        net_type& net,
        unsigned long new_window_size
    )
    {
        visit_layers(net, impl::visitor_bn_running_stats_window_size(new_window_size));
    }

// ----------------------------------------------------------------------------------------
982
983
// ----------------------------------------------------------------------------------------

984
985
    enum fc_bias_mode
    {
986
987
988
989
        FC_HAS_BIAS = 0,
        FC_NO_BIAS = 1
    };

990
991
992
993
994
995
996
997
998
999
    struct num_fc_outputs
    {
        num_fc_outputs(unsigned long n) : num_outputs(n) {}
        unsigned long num_outputs;
    };

    template <
        unsigned long num_outputs_,
        fc_bias_mode bias_mode
        >
1000
1001
    class fc_
    {
1002
1003
        static_assert(num_outputs_ > 0, "The number of outputs from a fc_ layer must be > 0");

1004
    public:
1005
1006
1007
1008
1009
1010
        fc_(num_fc_outputs o) : num_outputs(o.num_outputs), num_inputs(0),
            learning_rate_multiplier(1),
            weight_decay_multiplier(1),
            bias_learning_rate_multiplier(1),
            bias_weight_decay_multiplier(0)
        {}
1011

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
        fc_() : fc_(num_fc_outputs(num_outputs_)) {}

        double get_learning_rate_multiplier () const  { return learning_rate_multiplier; }
        double get_weight_decay_multiplier () const   { return weight_decay_multiplier; }
        void set_learning_rate_multiplier(double val) { learning_rate_multiplier = val; }
        void set_weight_decay_multiplier(double val)  { weight_decay_multiplier  = val; }

        double get_bias_learning_rate_multiplier () const  { return bias_learning_rate_multiplier; }
        double get_bias_weight_decay_multiplier () const   { return bias_weight_decay_multiplier; }
        void set_bias_learning_rate_multiplier(double val) { bias_learning_rate_multiplier = val; }
        void set_bias_weight_decay_multiplier(double val)  { bias_weight_decay_multiplier  = val; }
1023
1024
1025
1026

        unsigned long get_num_outputs (
        ) const { return num_outputs; }

1027
1028
1029
        fc_bias_mode get_bias_mode (
        ) const { return bias_mode; }

Davis King's avatar
Davis King committed
1030
1031
        template <typename SUBNET>
        void setup (const SUBNET& sub)
1032
1033
        {
            num_inputs = sub.get_output().nr()*sub.get_output().nc()*sub.get_output().k();
1034
1035
1036
1037
            if (bias_mode == FC_HAS_BIAS)
                params.set_size(num_inputs+1, num_outputs);
            else
                params.set_size(num_inputs, num_outputs);
1038

1039
            dlib::rand rnd(std::rand());
1040
            randomize_parameters(params, num_inputs+num_outputs, rnd);
1041
1042
1043
1044
1045
1046
1047
1048
1049

            weights = alias_tensor(num_inputs, num_outputs);

            if (bias_mode == FC_HAS_BIAS)
            {
                biases = alias_tensor(1,num_outputs);
                // set the initial bias values to zero
                biases(params,weights.size()) = 0;
            }
1050
1051
        }

Davis King's avatar
Davis King committed
1052
1053
        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
1054
        {
1055
            output.set_size(sub.get_output().num_samples(), num_outputs);
1056

1057
1058
1059
1060
1061
1062
1063
            auto w = weights(params, 0);
            tt::gemm(0,output, 1,sub.get_output(),false, w,false);
            if (bias_mode == FC_HAS_BIAS)
            {
                auto b = biases(params, weights.size());
                tt::add(1,output,1,b);
            }
1064
1065
        } 

Davis King's avatar
Davis King committed
1066
        template <typename SUBNET>
1067
        void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
1068
        {
1069
1070
            // no point computing the parameter gradients if they won't be used.
            if (learning_rate_multiplier != 0)
1071
            {
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
                // compute the gradient of the weight parameters.  
                auto pw = weights(params_grad, 0);
                tt::gemm(0,pw, 1,sub.get_output(),true, gradient_input,false);

                if (bias_mode == FC_HAS_BIAS)
                {
                    // compute the gradient of the bias parameters.  
                    auto pb = biases(params_grad, weights.size());
                    tt::assign_bias_gradient(pb, gradient_input);
                }
1082
            }
1083
1084

            // compute the gradient for the data
1085
1086
            auto w = weights(params, 0);
            tt::gemm(1,sub.get_gradient_input(), 1,gradient_input,false, w,true);
1087
1088
1089
1090
1091
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

1092
1093
        friend void serialize(const fc_& item, std::ostream& out)
        {
1094
            serialize("fc_2", out);
1095
1096
1097
            serialize(item.num_outputs, out);
            serialize(item.num_inputs, out);
            serialize(item.params, out);
1098
1099
            serialize(item.weights, out);
            serialize(item.biases, out);
1100
            serialize((int)bias_mode, out);
1101
1102
1103
1104
            serialize(item.learning_rate_multiplier, out);
            serialize(item.weight_decay_multiplier, out);
            serialize(item.bias_learning_rate_multiplier, out);
            serialize(item.bias_weight_decay_multiplier, out);
1105
1106
1107
1108
1109
1110
        }

        friend void deserialize(fc_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
1111
            if (version != "fc_2")
1112
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::fc_.");
1113

1114
1115
1116
            deserialize(item.num_outputs, in);
            deserialize(item.num_inputs, in);
            deserialize(item.params, in);
1117
1118
1119
1120
            deserialize(item.weights, in);
            deserialize(item.biases, in);
            int bmode = 0;
            deserialize(bmode, in);
1121
            if (bias_mode != (fc_bias_mode)bmode) throw serialization_error("Wrong fc_bias_mode found while deserializing dlib::fc_");
1122
1123
1124
1125
            deserialize(item.learning_rate_multiplier, in);
            deserialize(item.weight_decay_multiplier, in);
            deserialize(item.bias_learning_rate_multiplier, in);
            deserialize(item.bias_weight_decay_multiplier, in);
1126
1127
        }

1128
1129
1130
1131
1132
1133
1134
        friend std::ostream& operator<<(std::ostream& out, const fc_& item)
        {
            if (bias_mode == FC_HAS_BIAS)
            {
                out << "fc\t ("
                    << "num_outputs="<<item.num_outputs
                    << ")";
1135
1136
1137
1138
                out << " learning_rate_mult="<<item.learning_rate_multiplier;
                out << " weight_decay_mult="<<item.weight_decay_multiplier;
                out << " bias_learning_rate_mult="<<item.bias_learning_rate_multiplier;
                out << " bias_weight_decay_mult="<<item.bias_weight_decay_multiplier;
1139
1140
1141
1142
1143
1144
            }
            else
            {
                out << "fc_no_bias ("
                    << "num_outputs="<<item.num_outputs
                    << ")";
1145
1146
                out << " learning_rate_mult="<<item.learning_rate_multiplier;
                out << " weight_decay_mult="<<item.weight_decay_multiplier;
1147
1148
1149
1150
            }
            return out;
        }

Davis King's avatar
Davis King committed
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
        friend void to_xml(const fc_& item, std::ostream& out)
        {
            if (bias_mode==FC_HAS_BIAS)
            {
                out << "<fc"
                    << " num_outputs='"<<item.num_outputs<<"'"
                    << " learning_rate_mult='"<<item.learning_rate_multiplier<<"'"
                    << " weight_decay_mult='"<<item.weight_decay_multiplier<<"'"
                    << " bias_learning_rate_mult='"<<item.bias_learning_rate_multiplier<<"'"
                    << " bias_weight_decay_mult='"<<item.bias_weight_decay_multiplier<<"'";
                out << ">\n";
                out << mat(item.params);
                out << "</fc>\n";
            }
            else
            {
                out << "<fc_no_bias"
                    << " num_outputs='"<<item.num_outputs<<"'"
                    << " learning_rate_mult='"<<item.learning_rate_multiplier<<"'"
                    << " weight_decay_mult='"<<item.weight_decay_multiplier<<"'";
                out << ">\n";
                out << mat(item.params);
                out << "</fc_no_bias>\n";
            }
        }

1177
1178
1179
1180
1181
    private:

        unsigned long num_outputs;
        unsigned long num_inputs;
        resizable_tensor params;
1182
        alias_tensor weights, biases;
1183
1184
1185
1186
        double learning_rate_multiplier;
        double weight_decay_multiplier;
        double bias_learning_rate_multiplier;
        double bias_weight_decay_multiplier;
1187
1188
    };

1189
1190
1191
1192
    template <
        unsigned long num_outputs,
        typename SUBNET
        >
1193
1194
1195
1196
1197
1198
1199
    using fc = add_layer<fc_<num_outputs,FC_HAS_BIAS>, SUBNET>;

    template <
        unsigned long num_outputs,
        typename SUBNET
        >
    using fc_no_bias = add_layer<fc_<num_outputs,FC_NO_BIAS>, SUBNET>;
1200

Davis King's avatar
Davis King committed
1201
1202
1203
1204
1205
1206
1207
1208
// ----------------------------------------------------------------------------------------

    class dropout_
    {
    public:
        explicit dropout_(
            float drop_rate_ = 0.5
        ) :
1209
1210
            drop_rate(drop_rate_),
            rnd(std::rand())
Davis King's avatar
Davis King committed
1211
        {
1212
            DLIB_CASSERT(0 <= drop_rate && drop_rate <= 1);
Davis King's avatar
Davis King committed
1213
1214
1215
1216
1217
1218
        }

        // We have to add a copy constructor and assignment operator because the rnd object
        // is non-copyable.
        dropout_(
            const dropout_& item
1219
        ) : drop_rate(item.drop_rate), mask(item.mask), rnd(std::rand())
Davis King's avatar
Davis King committed
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
        {}

        dropout_& operator= (
            const dropout_& item
        )
        {
            if (this == &item)
                return *this;

            drop_rate = item.drop_rate;
            mask = item.mask;
            return *this;
        }

        float get_drop_rate (
        ) const { return drop_rate; }

        template <typename SUBNET>
        void setup (const SUBNET& /*sub*/)
        {
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            // create a random mask and use it to filter the data
            mask.copy_size(input);
            rnd.fill_uniform(mask);
            tt::threshold(mask, drop_rate);
1248
            tt::multiply(false, output, input, mask);
Davis King's avatar
Davis King committed
1249
1250
1251
1252
1253
1254
1255
1256
        } 

        void backward_inplace(
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& /*params_grad*/
        )
        {
1257
1258
1259
1260
            if (is_same_object(gradient_input, data_grad))
                tt::multiply(false, data_grad, mask, gradient_input);
            else
                tt::multiply(true, data_grad, mask, gradient_input);
Davis King's avatar
Davis King committed
1261
1262
        }

1263
1264
1265
        inline point map_input_to_output (const point& p) const { return p; }
        inline point map_output_to_input (const point& p) const { return p; }

Davis King's avatar
Davis King committed
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const dropout_& item, std::ostream& out)
        {
            serialize("dropout_", out);
            serialize(item.drop_rate, out);
            serialize(item.mask, out);
        }

        friend void deserialize(dropout_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "dropout_")
1281
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::dropout_.");
Davis King's avatar
Davis King committed
1282
1283
1284
1285
            deserialize(item.drop_rate, in);
            deserialize(item.mask, in);
        }

1286
1287
1288
1289
1290
1291
1292
1293
        friend std::ostream& operator<<(std::ostream& out, const dropout_& item)
        {
            out << "dropout\t ("
                << "drop_rate="<<item.drop_rate
                << ")";
            return out;
        }

Davis King's avatar
Davis King committed
1294
1295
1296
1297
1298
1299
1300
        friend void to_xml(const dropout_& item, std::ostream& out)
        {
            out << "<dropout"
                << " drop_rate='"<<item.drop_rate<<"'";
            out << "/>\n";
        }

Davis King's avatar
Davis King committed
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
    private:
        float drop_rate;
        resizable_tensor mask;

        tt::tensor_rand rnd;
        resizable_tensor params; // unused
    };


    template <typename SUBNET>
    using dropout = add_layer<dropout_, SUBNET>;

1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
// ----------------------------------------------------------------------------------------

    class multiply_
    {
    public:
        explicit multiply_(
            float val_ = 0.5
        ) :
            val(val_)
        {
        }

        multiply_ (
            const dropout_& item
        ) : val(1-item.get_drop_rate()) {}

        float get_multiply_value (
        ) const { return val; }

        template <typename SUBNET>
        void setup (const SUBNET& /*sub*/)
        {
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
1339
            tt::affine_transform(output, input, val);
1340
1341
        } 

1342
1343
1344
        inline point map_input_to_output (const point& p) const { return p; }
        inline point map_output_to_input (const point& p) const { return p; }

1345
1346
1347
1348
1349
1350
        void backward_inplace(
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& /*params_grad*/
        )
        {
1351
1352
1353
1354
            if (is_same_object(gradient_input, data_grad))
                tt::affine_transform(data_grad, gradient_input, val);
            else
                tt::affine_transform(data_grad, data_grad, gradient_input, 1, val);
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const multiply_& item, std::ostream& out)
        {
            serialize("multiply_", out);
            serialize(item.val, out);
        }

        friend void deserialize(multiply_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version == "dropout_")
            {
                // Since we can build a multiply_ from a dropout_ we check if that's what
                // is in the stream and if so then just convert it right here.
                unserialize sin(version, in);
                dropout_ temp;
                deserialize(temp, sin);
                item = temp;
                return;
            }

            if (version != "multiply_")
1382
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::multiply_.");
1383
1384
1385
            deserialize(item.val, in);
        }

1386
1387
1388
1389
1390
1391
1392
1393
        friend std::ostream& operator<<(std::ostream& out, const multiply_& item)
        {
            out << "multiply ("
                << "val="<<item.val
                << ")";
            return out;
        }

Davis King's avatar
Davis King committed
1394
1395
1396
1397
1398
1399
        friend void to_xml(const multiply_& item, std::ostream& out)
        {
            out << "<multiply"
                << " val='"<<item.val<<"'";
            out << "/>\n";
        }
1400
1401
1402
1403
1404
1405
1406
1407
    private:
        float val;
        resizable_tensor params; // unused
    };

    template <typename SUBNET>
    using multiply = add_layer<multiply_, SUBNET>;

Davis King's avatar
Davis King committed
1408
1409
1410
1411
1412
1413
// ----------------------------------------------------------------------------------------

    class affine_
    {
    public:
        affine_(
1414
1415
1416
        ) : mode(FC_MODE)
        {
        }
Davis King's avatar
Davis King committed
1417

1418
        affine_(
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
            layer_mode mode_
        ) : mode(mode_)
        {
        }

        template <
            layer_mode bnmode
            >
        affine_(
            const bn_<bnmode>& item
1429
1430
1431
1432
        )
        {
            gamma = item.gamma;
            beta = item.beta;
1433
            mode = bnmode;
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443

            params.copy_size(item.params);

            auto g = gamma(params,0);
            auto b = beta(params,gamma.size());
            
            resizable_tensor temp(item.params);
            auto sg = gamma(temp,0);
            auto sb = beta(temp,gamma.size());

1444
            g = pointwise_multiply(mat(sg), 1.0f/sqrt(mat(item.running_variances)+item.get_eps()));
1445
1446
1447
1448
1449
            b = mat(sb) - pointwise_multiply(mat(g), mat(item.running_means));
        }

        layer_mode get_mode() const { return mode; }

1450
1451
1452
        inline point map_input_to_output (const point& p) const { return p; }
        inline point map_output_to_input (const point& p) const { return p; }

Davis King's avatar
Davis King committed
1453
1454
1455
        template <typename SUBNET>
        void setup (const SUBNET& sub)
        {
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
            if (mode == FC_MODE)
            {
                gamma = alias_tensor(1,
                                sub.get_output().k(),
                                sub.get_output().nr(),
                                sub.get_output().nc());
            }
            else
            {
                gamma = alias_tensor(1, sub.get_output().k());
            }
Davis King's avatar
Davis King committed
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
            beta = gamma;

            params.set_size(gamma.size()+beta.size());

            gamma(params,0) = 1;
            beta(params,gamma.size()) = 0;
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            auto g = gamma(params,0);
            auto b = beta(params,gamma.size());
1479
1480
1481
1482
            if (mode == FC_MODE)
                tt::affine_transform(output, input, g, b);
            else
                tt::affine_transform_conv(output, input, g, b);
Davis King's avatar
Davis King committed
1483
1484
1485
1486
1487
        } 

        void backward_inplace(
            const tensor& gradient_input, 
            tensor& data_grad, 
Davis King's avatar
Davis King committed
1488
            tensor& /*params_grad*/
Davis King's avatar
Davis King committed
1489
1490
1491
1492
1493
1494
        )
        {
            auto g = gamma(params,0);
            auto b = beta(params,gamma.size());

            // We are computing the gradient of dot(gradient_input, computed_output*g + b)
1495
1496
            if (mode == FC_MODE)
            {
1497
1498
1499
1500
                if (is_same_object(gradient_input, data_grad))
                    tt::multiply(false, data_grad, gradient_input, g);
                else
                    tt::multiply(true, data_grad, gradient_input, g);
1501
1502
1503
            }
            else
            {
1504
1505
1506
1507
                if (is_same_object(gradient_input, data_grad))
                    tt::multiply_conv(false, data_grad, gradient_input, g);
                else
                    tt::multiply_conv(true, data_grad, gradient_input, g);
1508
            }
Davis King's avatar
Davis King committed
1509
1510
        }

1511
1512
        const tensor& get_layer_params() const { return empty_params; }
        tensor& get_layer_params() { return empty_params; }
Davis King's avatar
Davis King committed
1513
1514
1515
1516
1517
1518
1519

        friend void serialize(const affine_& item, std::ostream& out)
        {
            serialize("affine_", out);
            serialize(item.params, out);
            serialize(item.gamma, out);
            serialize(item.beta, out);
1520
            serialize((int)item.mode, out);
Davis King's avatar
Davis King committed
1521
1522
1523
1524
1525
1526
        }

        friend void deserialize(affine_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
1527
            if (version == "bn_con2")
1528
1529
1530
1531
1532
1533
1534
1535
1536
            {
                // Since we can build an affine_ from a bn_ we check if that's what is in
                // the stream and if so then just convert it right here.
                unserialize sin(version, in);
                bn_<CONV_MODE> temp;
                deserialize(temp, sin);
                item = temp;
                return;
            }
1537
            else if (version == "bn_fc2")
1538
1539
1540
1541
            {
                // Since we can build an affine_ from a bn_ we check if that's what is in
                // the stream and if so then just convert it right here.
                unserialize sin(version, in);
1542
                bn_<FC_MODE> temp;
1543
1544
1545
1546
1547
                deserialize(temp, sin);
                item = temp;
                return;
            }

Davis King's avatar
Davis King committed
1548
            if (version != "affine_")
1549
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::affine_.");
Davis King's avatar
Davis King committed
1550
1551
1552
            deserialize(item.params, in);
            deserialize(item.gamma, in);
            deserialize(item.beta, in);
1553
1554
1555
            int mode;
            deserialize(mode, in);
            item.mode = (layer_mode)mode;
Davis King's avatar
Davis King committed
1556
1557
        }

1558
1559
1560
1561
1562
1563
        friend std::ostream& operator<<(std::ostream& out, const affine_& )
        {
            out << "affine";
            return out;
        }

Davis King's avatar
Davis King committed
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
        friend void to_xml(const affine_& item, std::ostream& out)
        {
            out << "<affine";
            if (item.mode==CONV_MODE)
                out << " mode='conv'";
            else
                out << " mode='fc'";
            out << ">\n";
            out << mat(item.params);
            out << "</affine>\n";
        }

Davis King's avatar
Davis King committed
1576
    private:
1577
        resizable_tensor params, empty_params; 
Davis King's avatar
Davis King committed
1578
        alias_tensor gamma, beta;
1579
        layer_mode mode;
Davis King's avatar
Davis King committed
1580
1581
1582
    };

    template <typename SUBNET>
1583
    using affine = add_layer<affine_, SUBNET>;
Davis King's avatar
Davis King committed
1584

Davis King's avatar
Davis King committed
1585
1586
1587
1588
1589
1590
1591
1592
// ----------------------------------------------------------------------------------------

    template <
        template<typename> class tag
        >
    class add_prev_
    {
    public:
1593
1594
        const static unsigned long id = tag_id<tag>::id;

Davis King's avatar
Davis King committed
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
        add_prev_() 
        {
        }

        template <typename SUBNET>
        void setup (const SUBNET& /*sub*/)
        {
        }

        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
        {
1607
1608
1609
1610
1611
1612
1613
            auto&& t1 = sub.get_output();
            auto&& t2 = layer<tag>(sub).get_output();
            output.set_size(std::max(t1.num_samples(),t2.num_samples()),
                            std::max(t1.k(),t2.k()),
                            std::max(t1.nr(),t2.nr()),
                            std::max(t1.nc(),t2.nc()));
            tt::add(output, t1, t2);
Davis King's avatar
Davis King committed
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
        }

        template <typename SUBNET>
        void backward(const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
        {
            // The gradient just flows backwards to the two layers that forward() added
            // together.
            tt::add(sub.get_gradient_input(), sub.get_gradient_input(), gradient_input);
            tt::add(layer<tag>(sub).get_gradient_input(), layer<tag>(sub).get_gradient_input(), gradient_input);
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const add_prev_& , std::ostream& out)
        {
            serialize("add_prev_", out);
        }

        friend void deserialize(add_prev_& , std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "add_prev_")
1638
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::add_prev_.");
Davis King's avatar
Davis King committed
1639
1640
        }

1641
1642
        friend std::ostream& operator<<(std::ostream& out, const add_prev_& item)
        {
1643
            out << "add_prev"<<id;
1644
1645
1646
            return out;
        }

Davis King's avatar
Davis King committed
1647
1648
1649
1650
        friend void to_xml(const add_prev_& item, std::ostream& out)
        {
            out << "<add_prev tag='"<<id<<"'/>\n";
        }
1651

Davis King's avatar
Davis King committed
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
    private:
        resizable_tensor params;
    };

    template <
        template<typename> class tag,
        typename SUBNET
        >
    using add_prev = add_layer<add_prev_<tag>, SUBNET>;

    template <typename SUBNET> using add_prev1  = add_prev<tag1, SUBNET>;
    template <typename SUBNET> using add_prev2  = add_prev<tag2, SUBNET>;
    template <typename SUBNET> using add_prev3  = add_prev<tag3, SUBNET>;
    template <typename SUBNET> using add_prev4  = add_prev<tag4, SUBNET>;
    template <typename SUBNET> using add_prev5  = add_prev<tag5, SUBNET>;
    template <typename SUBNET> using add_prev6  = add_prev<tag6, SUBNET>;
    template <typename SUBNET> using add_prev7  = add_prev<tag7, SUBNET>;
    template <typename SUBNET> using add_prev8  = add_prev<tag8, SUBNET>;
    template <typename SUBNET> using add_prev9  = add_prev<tag9, SUBNET>;
    template <typename SUBNET> using add_prev10 = add_prev<tag10, SUBNET>;

    using add_prev1_  = add_prev_<tag1>;
    using add_prev2_  = add_prev_<tag2>;
    using add_prev3_  = add_prev_<tag3>;
    using add_prev4_  = add_prev_<tag4>;
    using add_prev5_  = add_prev_<tag5>;
    using add_prev6_  = add_prev_<tag6>;
    using add_prev7_  = add_prev_<tag7>;
    using add_prev8_  = add_prev_<tag8>;
    using add_prev9_  = add_prev_<tag9>;
    using add_prev10_ = add_prev_<tag10>;

1684
1685
1686
1687
1688
1689
1690
1691
1692
// ----------------------------------------------------------------------------------------

    class relu_
    {
    public:
        relu_() 
        {
        }

Davis King's avatar
Davis King committed
1693
        template <typename SUBNET>
Davis King's avatar
Davis King committed
1694
        void setup (const SUBNET& /*sub*/)
1695
1696
1697
        {
        }

1698
        void forward_inplace(const tensor& input, tensor& output)
1699
        {
1700
            tt::relu(output, input);
1701
1702
        } 

1703
1704
1705
1706
        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
1707
            tensor& 
1708
        )
1709
        {
1710
            tt::relu_gradient(data_grad, computed_output, gradient_input);
1711
1712
        }

1713
1714
1715
        inline point map_input_to_output (const point& p) const { return p; }
        inline point map_output_to_input (const point& p) const { return p; }

1716
1717
1718
        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

Davis King's avatar
Davis King committed
1719
        friend void serialize(const relu_& , std::ostream& out)
1720
        {
1721
            serialize("relu_", out);
1722
1723
        }

Davis King's avatar
Davis King committed
1724
        friend void deserialize(relu_& , std::istream& in)
1725
        {
1726
1727
1728
            std::string version;
            deserialize(version, in);
            if (version != "relu_")
1729
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::relu_.");
1730
1731
        }

1732
1733
1734
1735
1736
1737
        friend std::ostream& operator<<(std::ostream& out, const relu_& )
        {
            out << "relu";
            return out;
        }

Davis King's avatar
Davis King committed
1738
1739
1740
1741
        friend void to_xml(const relu_& /*item*/, std::ostream& out)
        {
            out << "<relu/>\n";
        }
1742

1743
1744
1745
1746
1747
1748
1749
1750
    private:
        resizable_tensor params;
    };


    template <typename SUBNET>
    using relu = add_layer<relu_, SUBNET>;

Davis King's avatar
Davis King committed
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
// ----------------------------------------------------------------------------------------

    class prelu_
    {
    public:
        explicit prelu_(
            float initial_param_value_ = 0.25
        ) : initial_param_value(initial_param_value_)
        {
        }

1762
1763
1764
        float get_initial_param_value (
        ) const { return initial_param_value; }

Davis King's avatar
Davis King committed
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
        template <typename SUBNET>
        void setup (const SUBNET& /*sub*/)
        {
            params.set_size(1);
            params = initial_param_value;
        }

        template <typename SUBNET>
        void forward(
            const SUBNET& sub, 
            resizable_tensor& data_output
        )
        {
            data_output.copy_size(sub.get_output());
            tt::prelu(data_output, sub.get_output(), params);
        }

        template <typename SUBNET>
        void backward(
            const tensor& gradient_input, 
            SUBNET& sub, 
            tensor& params_grad
        )
        {
            tt::prelu_gradient(sub.get_gradient_input(), sub.get_output(), 
                gradient_input, params, params_grad);
        }

1793
1794
1795
        inline point map_input_to_output (const point& p) const { return p; }
        inline point map_output_to_input (const point& p) const { return p; }

Davis King's avatar
Davis King committed
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const prelu_& item, std::ostream& out)
        {
            serialize("prelu_", out);
            serialize(item.params, out);
            serialize(item.initial_param_value, out);
        }

        friend void deserialize(prelu_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "prelu_")
1811
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::prelu_.");
Davis King's avatar
Davis King committed
1812
1813
1814
1815
            deserialize(item.params, in);
            deserialize(item.initial_param_value, in);
        }

1816
1817
1818
1819
1820
1821
1822
1823
        friend std::ostream& operator<<(std::ostream& out, const prelu_& item)
        {
            out << "prelu\t ("
                << "initial_param_value="<<item.initial_param_value
                << ")";
            return out;
        }

Davis King's avatar
Davis King committed
1824
1825
1826
1827
1828
1829
1830
        friend void to_xml(const prelu_& item, std::ostream& out)
        {
            out << "<prelu initial_param_value='"<<item.initial_param_value<<"'>\n";
            out << mat(item.params);
            out << "</prelu>\n";
        }

Davis King's avatar
Davis King committed
1831
1832
1833
1834
1835
1836
1837
1838
    private:
        resizable_tensor params;
        float initial_param_value;
    };

    template <typename SUBNET>
    using prelu = add_layer<prelu_, SUBNET>;

1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
// ----------------------------------------------------------------------------------------

    class sig_
    {
    public:
        sig_() 
        {
        }

        template <typename SUBNET>
Davis King's avatar
Davis King committed
1849
        void setup (const SUBNET& /*sub*/)
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
        {
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            tt::sigmoid(output, input);
        } 

        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& 
        )
        {
            tt::sigmoid_gradient(data_grad, computed_output, gradient_input);
        }

1868
1869
1870
        inline point map_input_to_output (const point& p) const { return p; }
        inline point map_output_to_input (const point& p) const { return p; }

1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const sig_& , std::ostream& out)
        {
            serialize("sig_", out);
        }

        friend void deserialize(sig_& , std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "sig_")
1884
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::sig_.");
1885
        }
1886

1887
1888
1889
1890
1891
1892
        friend std::ostream& operator<<(std::ostream& out, const sig_& )
        {
            out << "sig";
            return out;
        }

Davis King's avatar
Davis King committed
1893
1894
1895
1896
1897
        friend void to_xml(const sig_& /*item*/, std::ostream& out)
        {
            out << "<sig/>\n";
        }

1898

1899
    private:
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
        resizable_tensor params;
    };


    template <typename SUBNET>
    using sig = add_layer<sig_, SUBNET>;

// ----------------------------------------------------------------------------------------

    class htan_
    {
    public:
        htan_() 
        {
        }

        template <typename SUBNET>
Davis King's avatar
Davis King committed
1917
        void setup (const SUBNET& /*sub*/)
1918
1919
1920
        {
        }

1921
1922
1923
        inline point map_input_to_output (const point& p) const { return p; }
        inline point map_output_to_input (const point& p) const { return p; }

1924
1925
1926
1927
        void forward_inplace(const tensor& input, tensor& output)
        {
            tt::tanh(output, input);
        } 
1928

1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& 
        )
        {
            tt::tanh_gradient(data_grad, computed_output, gradient_input);
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const htan_& , std::ostream& out)
        {
            serialize("htan_", out);
        }

        friend void deserialize(htan_& , std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "htan_")
1952
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::htan_.");
1953
1954
        }

1955
1956
1957
1958
1959
1960
        friend std::ostream& operator<<(std::ostream& out, const htan_& )
        {
            out << "htan";
            return out;
        }

Davis King's avatar
Davis King committed
1961
1962
1963
1964
1965
        friend void to_xml(const htan_& /*item*/, std::ostream& out)
        {
            out << "<htan/>\n";
        }

1966

1967
    private:
1968
1969
1970
        resizable_tensor params;
    };

1971

Davis King's avatar
Davis King committed
1972
    template <typename SUBNET>
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
    using htan = add_layer<htan_, SUBNET>;

// ----------------------------------------------------------------------------------------

    class softmax_
    {
    public:
        softmax_() 
        {
        }

        template <typename SUBNET>
Davis King's avatar
Davis King committed
1985
        void setup (const SUBNET& /*sub*/)
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
        {
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            tt::softmax(output, input);
        } 

        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& 
        )
        {
            tt::softmax_gradient(data_grad, computed_output, gradient_input);
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const softmax_& , std::ostream& out)
        {
            serialize("softmax_", out);
        }

        friend void deserialize(softmax_& , std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "softmax_")
2017
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::softmax_.");
2018
2019
        }

2020
2021
2022
2023
2024
2025
        friend std::ostream& operator<<(std::ostream& out, const softmax_& )
        {
            out << "softmax";
            return out;
        }

Davis King's avatar
Davis King committed
2026
2027
2028
2029
2030
        friend void to_xml(const softmax_& /*item*/, std::ostream& out)
        {
            out << "<softmax/>\n";
        }

2031
2032
2033
2034
2035
2036
    private:
        resizable_tensor params;
    };

    template <typename SUBNET>
    using softmax = add_layer<softmax_, SUBNET>;
2037

Fm's avatar
Fm committed
2038
// ----------------------------------------------------------------------------------------
Fm's avatar
Fm committed
2039
2040
    namespace impl
    {
2041
2042
2043
2044
2045
2046
2047
2048
        template <template<typename> class TAG_TYPE, template<typename> class... TAG_TYPES>
        struct concat_helper_impl{

            constexpr static size_t tag_count() {return 1 + concat_helper_impl<TAG_TYPES...>::tag_count();}
            static void list_tags(std::ostream& out)
            {
                out << tag_id<TAG_TYPE>::id << (tag_count() > 1 ? "," : "");
                concat_helper_impl<TAG_TYPES...>::list_tags(out);
Davis King's avatar
Davis King committed
2049
2050
            }

Fm's avatar
Fm committed
2051
2052
2053
2054
            template<typename SUBNET>
            static void resize_out(resizable_tensor& out, const SUBNET& sub, long sum_k)
            {
                auto& t = layer<TAG_TYPE>(sub).get_output();
2055
                concat_helper_impl<TAG_TYPES...>::resize_out(out, sub, sum_k + t.k());
Fm's avatar
Fm committed
2056
2057
2058
2059
2060
2061
            }
            template<typename SUBNET>
            static void concat(tensor& out, const SUBNET& sub, size_t k_offset)
            {
                auto& t = layer<TAG_TYPE>(sub).get_output();
                tt::copy_tensor(out, k_offset, t, 0, t.k());
2062
2063
                k_offset += t.k();
                concat_helper_impl<TAG_TYPES...>::concat(out, sub, k_offset);
Fm's avatar
Fm committed
2064
2065
2066
2067
2068
2069
            }
            template<typename SUBNET>
            static void split(const tensor& input, SUBNET& sub, size_t k_offset)
            {
                auto& t = layer<TAG_TYPE>(sub).get_gradient_input();
                tt::copy_tensor(t, 0, input, k_offset, t.k());
2070
2071
                k_offset += t.k();
                concat_helper_impl<TAG_TYPES...>::split(input, sub, k_offset);
Fm's avatar
Fm committed
2072
2073
            }
        };
2074
2075
2076
        template <template<typename> class TAG_TYPE>
        struct concat_helper_impl<TAG_TYPE>{
            constexpr static size_t tag_count() {return 1;}
Davis King's avatar
Davis King committed
2077
2078
            static void list_tags(std::ostream& out) 
            { 
2079
                out << tag_id<TAG_TYPE>::id;
Davis King's avatar
Davis King committed
2080
            }
2081

Fm's avatar
Fm committed
2082
2083
2084
2085
            template<typename SUBNET>
            static void resize_out(resizable_tensor& out, const SUBNET& sub, long sum_k)
            {
                auto& t = layer<TAG_TYPE>(sub).get_output();
2086
                out.set_size(t.num_samples(), t.k() + sum_k, t.nr(), t.nc());
Fm's avatar
Fm committed
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
            }
            template<typename SUBNET>
            static void concat(tensor& out, const SUBNET& sub, size_t k_offset)
            {
                auto& t = layer<TAG_TYPE>(sub).get_output();
                tt::copy_tensor(out, k_offset, t, 0, t.k());
            }
            template<typename SUBNET>
            static void split(const tensor& input, SUBNET& sub, size_t k_offset)
            {
                auto& t = layer<TAG_TYPE>(sub).get_gradient_input();
                tt::copy_tensor(t, 0, input, k_offset, t.k());
            }
        };
    }
    // concat layer
    template<
        template<typename> class... TAG_TYPES
        >
    class concat_
    {
Davis King's avatar
Davis King committed
2108
2109
        static void list_tags(std::ostream& out) { impl::concat_helper_impl<TAG_TYPES...>::list_tags(out);};

Fm's avatar
Fm committed
2110
    public:
2111
2112
        constexpr static size_t tag_count() {return impl::concat_helper_impl<TAG_TYPES...>::tag_count();};

Fm's avatar
Fm committed
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
        template <typename SUBNET>
        void setup (const SUBNET&)
        {
            // do nothing
        }
        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
        {
            // the total depth of result is the sum of depths from all tags
            impl::concat_helper_impl<TAG_TYPES...>::resize_out(output, sub, 0);

            // copy output from each tag into different part result
            impl::concat_helper_impl<TAG_TYPES...>::concat(output, sub, 0);
        }

        template <typename SUBNET>
        void backward(const tensor& gradient_input, SUBNET& sub, tensor&)
        {
Davis King's avatar
Davis King committed
2131
            // Gradient is split into parts for each tag layer
Fm's avatar
Fm committed
2132
2133
2134
            impl::concat_helper_impl<TAG_TYPES...>::split(gradient_input, sub, 0);
        }

2135
2136
2137
        point map_input_to_output(point p) const;
        point map_output_to_input(point p) const;

Fm's avatar
Fm committed
2138
2139
2140
2141
2142
2143
        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const concat_& item, std::ostream& out)
        {
            serialize("concat_", out);
2144
2145
            size_t count = tag_count();
            serialize(count, out);
Fm's avatar
Fm committed
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
        }

        friend void deserialize(concat_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "concat_")
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::concat_.");
            size_t count_tags;
            deserialize(count_tags, in);
2156
            if (count_tags != tag_count())
Fm's avatar
Fm committed
2157
                throw serialization_error("Invalid count of tags "+ std::to_string(count_tags) +", expecting " +
2158
2159
                                          std::to_string(tag_count()) +
                                                  " found while deserializing dlib::concat_.");
Fm's avatar
Fm committed
2160
2161
2162
2163
        }

        friend std::ostream& operator<<(std::ostream& out, const concat_& item)
        {
Davis King's avatar
Davis King committed
2164
2165
2166
            out << "concat\t (";
            list_tags(out);
            out << ")";
Fm's avatar
Fm committed
2167
2168
2169
            return out;
        }

Davis King's avatar
Davis King committed
2170
2171
2172
2173
2174
2175
2176
        friend void to_xml(const concat_& item, std::ostream& out)
        {
            out << "<concat tags='";
            list_tags(out);
            out << "'/>\n";
        }

Fm's avatar
Fm committed
2177
2178
2179
2180
2181
    private:
        resizable_tensor params; // unused
    };


2182
2183
2184
2185
2186
    // concat layer definitions
    template <template<typename> class TAG1,
            template<typename> class TAG2,
            typename SUBNET>
    using concat2 = add_layer<concat_<TAG1, TAG2>, SUBNET>;
2187

2188
2189
2190
2191
2192
    template <template<typename> class TAG1,
            template<typename> class TAG2,
            template<typename> class TAG3,
            typename SUBNET>
    using concat3 = add_layer<concat_<TAG1, TAG2, TAG3>, SUBNET>;
2193

2194
2195
2196
2197
2198
2199
    template <template<typename> class TAG1,
            template<typename> class TAG2,
            template<typename> class TAG3,
            template<typename> class TAG4,
            typename SUBNET>
    using concat4 = add_layer<concat_<TAG1, TAG2, TAG3, TAG4>, SUBNET>;
2200

2201
2202
2203
2204
2205
2206
2207
    template <template<typename> class TAG1,
            template<typename> class TAG2,
            template<typename> class TAG3,
            template<typename> class TAG4,
            template<typename> class TAG5,
            typename SUBNET>
    using concat5 = add_layer<concat_<TAG1, TAG2, TAG3, TAG4, TAG5>, SUBNET>;
Fm's avatar
Fm committed
2208

Davis King's avatar
Davis King committed
2209
2210
    // inception layer will use tags internally. If user will use tags too, some conflicts
    // possible to exclude them, here are new tags specially for inceptions
Fm's avatar
Fm committed
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
    template <typename SUBNET> using itag0  = add_tag_layer< 1000 + 0, SUBNET>;
    template <typename SUBNET> using itag1  = add_tag_layer< 1000 + 1, SUBNET>;
    template <typename SUBNET> using itag2  = add_tag_layer< 1000 + 2, SUBNET>;
    template <typename SUBNET> using itag3  = add_tag_layer< 1000 + 3, SUBNET>;
    template <typename SUBNET> using itag4  = add_tag_layer< 1000 + 4, SUBNET>;
    template <typename SUBNET> using itag5  = add_tag_layer< 1000 + 5, SUBNET>;
    // skip to inception input
    template <typename SUBNET> using iskip  = add_skip_layer< itag0, SUBNET>;

    // here are some templates to be used for creating inception layer groups
    template <template<typename>class B1,
            template<typename>class B2,
            typename SUBNET>
2224
    using inception2 = concat2<itag1, itag2, itag1<B1<iskip< itag2<B2< itag0<SUBNET>>>>>>>;
2225

Fm's avatar
Fm committed
2226
2227
2228
2229
    template <template<typename>class B1,
            template<typename>class B2,
            template<typename>class B3,
            typename SUBNET>
2230
    using inception3 = concat3<itag1, itag2, itag3, itag1<B1<iskip< itag2<B2<iskip< itag3<B3<  itag0<SUBNET>>>>>>>>>>;
2231

Fm's avatar
Fm committed
2232
2233
2234
2235
2236
    template <template<typename>class B1,
            template<typename>class B2,
            template<typename>class B3,
            template<typename>class B4,
            typename SUBNET>
2237
    using inception4 = concat4<itag1, itag2, itag3, itag4,
2238
2239
                itag1<B1<iskip< itag2<B2<iskip< itag3<B3<iskip<  itag4<B4<  itag0<SUBNET>>>>>>>>>>>>>;

Fm's avatar
Fm committed
2240
2241
2242
2243
2244
2245
    template <template<typename>class B1,
            template<typename>class B2,
            template<typename>class B3,
            template<typename>class B4,
            template<typename>class B5,
            typename SUBNET>
2246
    using inception5 = concat5<itag1, itag2, itag3, itag4, itag5,
Davis King's avatar
Davis King committed
2247
                itag1<B1<iskip< itag2<B2<iskip< itag3<B3<iskip<  itag4<B4<iskip<  itag5<B5<  itag0<SUBNET>>>>>>>>>>>>>>>>;
2248
2249
2250
2251
// ----------------------------------------------------------------------------------------

}

2252
#endif // DLIB_DNn_LAYERS_H_
2253
2254