layers.h 60.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_DNn_LAYERS_H_
#define DLIB_DNn_LAYERS_H_

#include "layers_abstract.h"
#include "tensor.h"
#include "core.h"
#include <iostream>
#include <string>
Davis King's avatar
Davis King committed
11
12
#include "../rand.h"
#include "../string.h"
13
#include "tensor_tools.h"
14
#include "../vectorstream.h"
15
16
17
18
19
20
21


namespace dlib
{

// ----------------------------------------------------------------------------------------

22
23
24
25
26
    template <
        long _num_filters,
        long _nr,
        long _nc,
        int _stride_y,
27
28
29
        int _stride_x,
        int _padding_y = _stride_y!=1? 0 : _nr/2,
        int _padding_x = _stride_x!=1? 0 : _nc/2
30
        >
31
32
33
    class con_
    {
    public:
34

35
36
37
38
39
        static_assert(_num_filters > 0, "The number of filters must be > 0");
        static_assert(_nr > 0, "The number of rows in a filter must be > 0");
        static_assert(_nc > 0, "The number of columns in a filter must be > 0");
        static_assert(_stride_y > 0, "The filter stride must be > 0");
        static_assert(_stride_x > 0, "The filter stride must be > 0");
40
41
        static_assert(0 <= _padding_y && _padding_y < _nr, "The padding must be smaller than the filter size.");
        static_assert(0 <= _padding_x && _padding_x < _nc, "The padding must be smaller than the filter size.");
42

Davis King's avatar
Davis King committed
43
        con_(
44
        ) : 
45
46
47
48
            learning_rate_multiplier(1),
            weight_decay_multiplier(1),
            bias_learning_rate_multiplier(1),
            bias_weight_decay_multiplier(0),
49
50
            padding_y_(_padding_y),
            padding_x_(_padding_x)
51
52
        {}

53
54
55
56
57
        long num_filters() const { return _num_filters; }
        long nr() const { return _nr; }
        long nc() const { return _nc; }
        long stride_y() const { return _stride_y; }
        long stride_x() const { return _stride_x; }
58
59
        long padding_y() const { return padding_y_; }
        long padding_x() const { return padding_x_; }
60

61
62
63
64
65
66
67
68
69
70
71
        double get_learning_rate_multiplier () const  { return learning_rate_multiplier; }
        double get_weight_decay_multiplier () const   { return weight_decay_multiplier; }
        void set_learning_rate_multiplier(double val) { learning_rate_multiplier = val; }
        void set_weight_decay_multiplier(double val)  { weight_decay_multiplier  = val; }

        double get_bias_learning_rate_multiplier () const  { return bias_learning_rate_multiplier; }
        double get_bias_weight_decay_multiplier () const   { return bias_weight_decay_multiplier; }
        void set_bias_learning_rate_multiplier(double val) { bias_learning_rate_multiplier = val; }
        void set_bias_weight_decay_multiplier(double val)  { bias_weight_decay_multiplier  = val; }


Davis King's avatar
Davis King committed
72
73
74
75
76
        con_ (
            const con_& item
        ) : 
            params(item.params),
            filters(item.filters),
77
            biases(item.biases),
78
79
80
81
            learning_rate_multiplier(item.learning_rate_multiplier),
            weight_decay_multiplier(item.weight_decay_multiplier),
            bias_learning_rate_multiplier(item.bias_learning_rate_multiplier),
            bias_weight_decay_multiplier(item.bias_weight_decay_multiplier),
82
83
            padding_y_(item.padding_y_),
            padding_x_(item.padding_x_)
Davis King's avatar
Davis King committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        {
            // this->conv is non-copyable and basically stateless, so we have to write our
            // own copy to avoid trying to copy it and getting an error.
        }

        con_& operator= (
            const con_& item
        )
        {
            if (this == &item)
                return *this;

            // this->conv is non-copyable and basically stateless, so we have to write our
            // own copy to avoid trying to copy it and getting an error.
            params = item.params;
            filters = item.filters;
            biases = item.biases;
101
102
            padding_y_ = item.padding_y_;
            padding_x_ = item.padding_x_;
103
104
105
106
            learning_rate_multiplier = item.learning_rate_multiplier;
            weight_decay_multiplier = item.weight_decay_multiplier;
            bias_learning_rate_multiplier = item.bias_learning_rate_multiplier;
            bias_weight_decay_multiplier = item.bias_weight_decay_multiplier;
Davis King's avatar
Davis King committed
107
108
109
            return *this;
        }

Davis King's avatar
Davis King committed
110
111
        template <typename SUBNET>
        void setup (const SUBNET& sub)
112
        {
113
114
            long num_inputs = _nr*_nc*sub.get_output().k();
            long num_outputs = _num_filters;
Davis King's avatar
Davis King committed
115
            // allocate params for the filters and also for the filter bias values.
116
            params.set_size(num_inputs*_num_filters + _num_filters);
Davis King's avatar
Davis King committed
117

118
            dlib::rand rnd(std::rand());
Davis King's avatar
Davis King committed
119
120
            randomize_parameters(params, num_inputs+num_outputs, rnd);

121
122
            filters = alias_tensor(_num_filters, sub.get_output().k(), _nr, _nc);
            biases = alias_tensor(1,_num_filters);
Davis King's avatar
Davis King committed
123
124
125

            // set the initial bias values to zero
            biases(params,filters.size()) = 0;
126
127
        }

Davis King's avatar
Davis King committed
128
129
        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
130
        {
Davis King's avatar
Davis King committed
131
132
133
            conv(output,
                sub.get_output(),
                filters(params,0),
134
                _stride_y,
135
                _stride_x,
136
137
                padding_y_,
                padding_x_
138
                );
Davis King's avatar
Davis King committed
139
140

            tt::add(1,output,1,biases(params,filters.size()));
141
142
        } 

Davis King's avatar
Davis King committed
143
        template <typename SUBNET>
144
        void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
145
        {
Davis King's avatar
Davis King committed
146
            conv.get_gradient_for_data (gradient_input, filters(params,0), sub.get_gradient_input());
147
148
149
150
151
152
153
154
            // no point computing the parameter gradients if they won't be used.
            if (learning_rate_multiplier != 0)
            {
                auto filt = filters(params_grad,0);
                conv.get_gradient_for_filters (gradient_input, sub.get_output(), filt);
                auto b = biases(params_grad, filters.size());
                tt::assign_conv_bias_gradient(b, gradient_input);
            }
155
156
157
158
159
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

Davis King's avatar
Davis King committed
160
161
        friend void serialize(const con_& item, std::ostream& out)
        {
162
            serialize("con_3", out);
Davis King's avatar
Davis King committed
163
            serialize(item.params, out);
164
165
166
167
168
            serialize(_num_filters, out);
            serialize(_nr, out);
            serialize(_nc, out);
            serialize(_stride_y, out);
            serialize(_stride_x, out);
169
170
            serialize(item.padding_y_, out);
            serialize(item.padding_x_, out);
Davis King's avatar
Davis King committed
171
172
            serialize(item.filters, out);
            serialize(item.biases, out);
173
174
175
176
            serialize(item.learning_rate_multiplier, out);
            serialize(item.weight_decay_multiplier, out);
            serialize(item.bias_learning_rate_multiplier, out);
            serialize(item.bias_weight_decay_multiplier, out);
Davis King's avatar
Davis King committed
177
178
179
180
181
182
        }

        friend void deserialize(con_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
183
184
185
186
187
            long num_filters;
            long nr;
            long nc;
            int stride_y;
            int stride_x;
188
189
190
191
192
193
194
195
196
197
198
199
200
            if (version == "con_")
            {
                deserialize(item.params, in);
                deserialize(num_filters, in);
                deserialize(nr, in);
                deserialize(nc, in);
                deserialize(stride_y, in);
                deserialize(stride_x, in);
                deserialize(item.filters, in);
                deserialize(item.biases, in);
                item.padding_y_ = nr/2;
                item.padding_x_ = nc/2;
            }
201
            else if (version == "con_2" || version == "con_3")
202
203
204
205
206
207
208
209
210
211
212
213
            {
                deserialize(item.params, in);
                deserialize(num_filters, in);
                deserialize(nr, in);
                deserialize(nc, in);
                deserialize(stride_y, in);
                deserialize(stride_x, in);
                deserialize(item.padding_y_, in);
                deserialize(item.padding_x_, in);
                deserialize(item.filters, in);
                deserialize(item.biases, in);

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
                if (version == "con_3")
                {
                    deserialize(item.learning_rate_multiplier, in);
                    deserialize(item.weight_decay_multiplier, in);
                    deserialize(item.bias_learning_rate_multiplier, in);
                    deserialize(item.bias_weight_decay_multiplier, in);
                }
                else
                {
                    // Previous versions didn't have these parameters, so they were
                    // implicitly 1.
                    item.learning_rate_multiplier = 1;
                    item.weight_decay_multiplier = 1;
                    item.bias_learning_rate_multiplier = 1;
                    item.bias_weight_decay_multiplier = 1;
                }

231
232
233
234
235
236
237
                if (item.padding_y_ != _padding_y) throw serialization_error("Wrong padding_y found while deserializing dlib::con_");
                if (item.padding_x_ != _padding_x) throw serialization_error("Wrong padding_x found while deserializing dlib::con_");
            }
            else
            {
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::con_.");
            }
238
239
240
241
242
243

            if (num_filters != _num_filters) throw serialization_error("Wrong num_filters found while deserializing dlib::con_");
            if (nr != _nr) throw serialization_error("Wrong nr found while deserializing dlib::con_");
            if (nc != _nc) throw serialization_error("Wrong nc found while deserializing dlib::con_");
            if (stride_y != _stride_y) throw serialization_error("Wrong stride_y found while deserializing dlib::con_");
            if (stride_x != _stride_x) throw serialization_error("Wrong stride_x found while deserializing dlib::con_");
Davis King's avatar
Davis King committed
244
245
        }

246
247
248
249
250
251
252
253
254

        friend std::ostream& operator<<(std::ostream& out, const con_& item)
        {
            out << "con\t ("
                << "num_filters="<<_num_filters
                << ", nr="<<_nr
                << ", nc="<<_nc
                << ", stride_y="<<_stride_y
                << ", stride_x="<<_stride_x
255
256
                << ", padding_y="<<item.padding_y_
                << ", padding_x="<<item.padding_x_
257
                << ")";
258
259
260
261
            out << " learning_rate_mult="<<item.learning_rate_multiplier;
            out << " weight_decay_mult="<<item.weight_decay_multiplier;
            out << " bias_learning_rate_mult="<<item.bias_learning_rate_multiplier;
            out << " bias_weight_decay_mult="<<item.bias_weight_decay_multiplier;
262
263
264
265
            return out;
        }


266
267
268
    private:

        resizable_tensor params;
Davis King's avatar
Davis King committed
269
270
271
        alias_tensor filters, biases;

        tt::tensor_conv conv;
272
273
274
275
        double learning_rate_multiplier;
        double weight_decay_multiplier;
        double bias_learning_rate_multiplier;
        double bias_weight_decay_multiplier;
Davis King's avatar
Davis King committed
276

277
278
279
280
281
        // These are here only because older versions of con (which you might encounter
        // serialized to disk) used different padding settings.
        int padding_y_;
        int padding_x_;

282
283
    };

284
285
286
287
288
289
290
291
292
    template <
        long num_filters,
        long nr,
        long nc,
        int stride_y,
        int stride_x,
        typename SUBNET
        >
    using con = add_layer<con_<num_filters,nr,nc,stride_y,stride_x>, SUBNET>;
293

Davis King's avatar
Davis King committed
294
295
// ----------------------------------------------------------------------------------------

296
297
298
299
    template <
        long _nr,
        long _nc,
        int _stride_y,
300
301
302
        int _stride_x,
        int _padding_y = _stride_y!=1? 0 : _nr/2,
        int _padding_x = _stride_x!=1? 0 : _nc/2
303
        >
Davis King's avatar
Davis King committed
304
305
    class max_pool_
    {
306
307
        static_assert(_nr >= 0, "The number of rows in a filter must be >= 0");
        static_assert(_nc >= 0, "The number of columns in a filter must be >= 0");
308
309
        static_assert(_stride_y > 0, "The filter stride must be > 0");
        static_assert(_stride_x > 0, "The filter stride must be > 0");
Davis King's avatar
Davis King committed
310
        static_assert(0 <= _padding_y && ((_nr==0 && _padding_y == 0) || (_nr!=0 && _padding_y < _nr)), 
311
            "The padding must be smaller than the filter size, unless the filters size is 0.");
Davis King's avatar
Davis King committed
312
        static_assert(0 <= _padding_x && ((_nc==0 && _padding_x == 0) || (_nc!=0 && _padding_x < _nc)), 
313
            "The padding must be smaller than the filter size, unless the filters size is 0.");
Davis King's avatar
Davis King committed
314
315
316
317
    public:


        max_pool_(
318
319
320
321
        ) :
            padding_y_(_padding_y),
            padding_x_(_padding_x)
        {}
Davis King's avatar
Davis King committed
322
323
324
325
326

        long nr() const { return _nr; }
        long nc() const { return _nc; }
        long stride_y() const { return _stride_y; }
        long stride_x() const { return _stride_x; }
327
328
        long padding_y() const { return padding_y_; }
        long padding_x() const { return padding_x_; }
Davis King's avatar
Davis King committed
329
330

        max_pool_ (
331
332
333
334
            const max_pool_& item
        )  :
            padding_y_(item.padding_y_),
            padding_x_(item.padding_x_)
Davis King's avatar
Davis King committed
335
336
337
338
339
340
341
342
343
344
345
346
        {
            // this->mp is non-copyable so we have to write our own copy to avoid trying to
            // copy it and getting an error.
        }

        max_pool_& operator= (
            const max_pool_& item
        )
        {
            if (this == &item)
                return *this;

347
348
349
            padding_y_ = item.padding_y_;
            padding_x_ = item.padding_x_;

Davis King's avatar
Davis King committed
350
351
352
353
354
355
356
357
358
359
360
361
362
            // this->mp is non-copyable so we have to write our own copy to avoid trying to
            // copy it and getting an error.
            return *this;
        }

        template <typename SUBNET>
        void setup (const SUBNET& /*sub*/)
        {
        }

        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
        {
363
            mp.setup_max_pooling(_nr!=0?_nr:sub.get_output().nr(), 
364
365
366
                                 _nc!=0?_nc:sub.get_output().nc(),
                                 _stride_y, _stride_x, padding_y_, padding_x_);

Davis King's avatar
Davis King committed
367
368
369
370
371
372
            mp(output, sub.get_output());
        } 

        template <typename SUBNET>
        void backward(const tensor& computed_output, const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
        {
373
            mp.setup_max_pooling(_nr!=0?_nr:sub.get_output().nr(), 
374
375
376
                                 _nc!=0?_nc:sub.get_output().nc(),
                                 _stride_y, _stride_x, padding_y_, padding_x_);

Davis King's avatar
Davis King committed
377
378
379
380
381
382
383
384
            mp.get_gradient(gradient_input, computed_output, sub.get_output(), sub.get_gradient_input());
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const max_pool_& item, std::ostream& out)
        {
385
            serialize("max_pool_2", out);
386
387
388
389
            serialize(_nr, out);
            serialize(_nc, out);
            serialize(_stride_y, out);
            serialize(_stride_x, out);
390
391
            serialize(item.padding_y_, out);
            serialize(item.padding_x_, out);
Davis King's avatar
Davis King committed
392
393
394
395
396
397
        }

        friend void deserialize(max_pool_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
398
399
400
401
            long nr;
            long nc;
            int stride_y;
            int stride_x;
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
            if (version == "max_pool_")
            {
                deserialize(nr, in);
                deserialize(nc, in);
                deserialize(stride_y, in);
                deserialize(stride_x, in);
                item.padding_y_ = nr/2;
                item.padding_x_ = nc/2;
            }
            else if (version == "max_pool_2")
            {
                deserialize(nr, in);
                deserialize(nc, in);
                deserialize(stride_y, in);
                deserialize(stride_x, in);
                deserialize(item.padding_y_, in);
                deserialize(item.padding_x_, in);
                if (item.padding_y_ != _padding_y) throw serialization_error("Wrong padding_y found while deserializing dlib::max_pool_");
                if (item.padding_x_ != _padding_x) throw serialization_error("Wrong padding_x found while deserializing dlib::max_pool_");
            }
            else
            {
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::max_pool_.");
            }
426
427
428
429
430

            if (_nr != nr) throw serialization_error("Wrong nr found while deserializing dlib::max_pool_");
            if (_nc != nc) throw serialization_error("Wrong nc found while deserializing dlib::max_pool_");
            if (_stride_y != stride_y) throw serialization_error("Wrong stride_y found while deserializing dlib::max_pool_");
            if (_stride_x != stride_x) throw serialization_error("Wrong stride_x found while deserializing dlib::max_pool_");
Davis King's avatar
Davis King committed
431
432
        }

433
434
435
436
437
438
439
        friend std::ostream& operator<<(std::ostream& out, const max_pool_& item)
        {
            out << "max_pool ("
                << "nr="<<_nr
                << ", nc="<<_nc
                << ", stride_y="<<_stride_y
                << ", stride_x="<<_stride_x
440
441
                << ", padding_y="<<item.padding_y_
                << ", padding_x="<<item.padding_x_
442
443
444
445
446
                << ")";
            return out;
        }


Davis King's avatar
Davis King committed
447
448
449
    private:


450
        tt::pooling mp;
Davis King's avatar
Davis King committed
451
        resizable_tensor params;
452
453
454

        int padding_y_;
        int padding_x_;
Davis King's avatar
Davis King committed
455
456
    };

457
458
459
460
461
462
463
464
    template <
        long nr,
        long nc,
        int stride_y,
        int stride_x,
        typename SUBNET
        >
    using max_pool = add_layer<max_pool_<nr,nc,stride_y,stride_x>, SUBNET>;
Davis King's avatar
Davis King committed
465

466
467
468
469
470
    template <
        typename SUBNET
        >
    using max_pool_everything = add_layer<max_pool_<0,0,1,1>, SUBNET>;

471
472
// ----------------------------------------------------------------------------------------

473
474
475
476
    template <
        long _nr,
        long _nc,
        int _stride_y,
477
478
479
        int _stride_x,
        int _padding_y = _stride_y!=1? 0 : _nr/2,
        int _padding_x = _stride_x!=1? 0 : _nc/2
480
        >
481
482
483
    class avg_pool_
    {
    public:
484
485
        static_assert(_nr >= 0, "The number of rows in a filter must be >= 0");
        static_assert(_nc >= 0, "The number of columns in a filter must be >= 0");
486
487
        static_assert(_stride_y > 0, "The filter stride must be > 0");
        static_assert(_stride_x > 0, "The filter stride must be > 0");
Davis King's avatar
Davis King committed
488
        static_assert(0 <= _padding_y && ((_nr==0 && _padding_y == 0) || (_nr!=0 && _padding_y < _nr)), 
489
            "The padding must be smaller than the filter size, unless the filters size is 0.");
Davis King's avatar
Davis King committed
490
        static_assert(0 <= _padding_x && ((_nc==0 && _padding_x == 0) || (_nc!=0 && _padding_x < _nc)), 
491
            "The padding must be smaller than the filter size, unless the filters size is 0.");
492
493

        avg_pool_(
494
495
496
497
        ) :
            padding_y_(_padding_y),
            padding_x_(_padding_x)
        {}
498
499
500
501
502

        long nr() const { return _nr; }
        long nc() const { return _nc; }
        long stride_y() const { return _stride_y; }
        long stride_x() const { return _stride_x; }
503
504
        long padding_y() const { return padding_y_; }
        long padding_x() const { return padding_x_; }
505
506

        avg_pool_ (
507
508
509
510
            const avg_pool_& item
        )  :
            padding_y_(item.padding_y_),
            padding_x_(item.padding_x_)
511
512
513
514
515
516
517
518
519
520
521
522
        {
            // this->ap is non-copyable so we have to write our own copy to avoid trying to
            // copy it and getting an error.
        }

        avg_pool_& operator= (
            const avg_pool_& item
        )
        {
            if (this == &item)
                return *this;

523
524
525
            padding_y_ = item.padding_y_;
            padding_x_ = item.padding_x_;

526
527
528
529
530
531
532
533
534
535
536
537
538
            // this->ap is non-copyable so we have to write our own copy to avoid trying to
            // copy it and getting an error.
            return *this;
        }

        template <typename SUBNET>
        void setup (const SUBNET& /*sub*/)
        {
        }

        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
        {
539
540
541
542
            ap.setup_avg_pooling(_nr!=0?_nr:sub.get_output().nr(), 
                                 _nc!=0?_nc:sub.get_output().nc(),
                                 _stride_y, _stride_x, padding_y_, padding_x_);

543
544
545
546
547
548
            ap(output, sub.get_output());
        } 

        template <typename SUBNET>
        void backward(const tensor& computed_output, const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
        {
549
550
551
552
            ap.setup_avg_pooling(_nr!=0?_nr:sub.get_output().nr(), 
                                 _nc!=0?_nc:sub.get_output().nc(),
                                 _stride_y, _stride_x, padding_y_, padding_x_);

553
554
555
556
557
558
559
560
            ap.get_gradient(gradient_input, computed_output, sub.get_output(), sub.get_gradient_input());
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const avg_pool_& item, std::ostream& out)
        {
561
            serialize("avg_pool_2", out);
562
563
564
565
            serialize(_nr, out);
            serialize(_nc, out);
            serialize(_stride_y, out);
            serialize(_stride_x, out);
566
567
            serialize(item.padding_y_, out);
            serialize(item.padding_x_, out);
568
569
570
571
572
573
        }

        friend void deserialize(avg_pool_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
574
575
576
577
578

            long nr;
            long nc;
            int stride_y;
            int stride_x;
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
            if (version == "avg_pool_")
            {
                deserialize(nr, in);
                deserialize(nc, in);
                deserialize(stride_y, in);
                deserialize(stride_x, in);
                item.padding_y_ = nr/2;
                item.padding_x_ = nc/2;
            }
            else if (version == "avg_pool_2")
            {
                deserialize(nr, in);
                deserialize(nc, in);
                deserialize(stride_y, in);
                deserialize(stride_x, in);
                deserialize(item.padding_y_, in);
                deserialize(item.padding_x_, in);
                if (item.padding_y_ != _padding_y) throw serialization_error("Wrong padding_y found while deserializing dlib::avg_pool_");
                if (item.padding_x_ != _padding_x) throw serialization_error("Wrong padding_x found while deserializing dlib::avg_pool_");
            }
            else
            {
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::avg_pool_.");
            }
603
604
605
606
607

            if (_nr != nr) throw serialization_error("Wrong nr found while deserializing dlib::avg_pool_");
            if (_nc != nc) throw serialization_error("Wrong nc found while deserializing dlib::avg_pool_");
            if (_stride_y != stride_y) throw serialization_error("Wrong stride_y found while deserializing dlib::avg_pool_");
            if (_stride_x != stride_x) throw serialization_error("Wrong stride_x found while deserializing dlib::avg_pool_");
608
609
        }

610
611
612
613
614
615
616
        friend std::ostream& operator<<(std::ostream& out, const avg_pool_& item)
        {
            out << "avg_pool ("
                << "nr="<<_nr
                << ", nc="<<_nc
                << ", stride_y="<<_stride_y
                << ", stride_x="<<_stride_x
617
618
                << ", padding_y="<<item.padding_y_
                << ", padding_x="<<item.padding_x_
619
620
621
                << ")";
            return out;
        }
622
623
624
625
    private:

        tt::pooling ap;
        resizable_tensor params;
626
627
628

        int padding_y_;
        int padding_x_;
629
630
    };

631
632
633
634
635
636
637
638
    template <
        long nr,
        long nc,
        int stride_y,
        int stride_x,
        typename SUBNET
        >
    using avg_pool = add_layer<avg_pool_<nr,nc,stride_y,stride_x>, SUBNET>;
639

640
641
642
643
644
    template <
        typename SUBNET
        >
    using avg_pool_everything = add_layer<avg_pool_<0,0,1,1>, SUBNET>;

645
646
// ----------------------------------------------------------------------------------------

647
    enum layer_mode
648
    {
649
650
        CONV_MODE = 0,
        FC_MODE = 1
651
652
    };

653
654
    const double DEFAULT_BATCH_NORM_EPS = 0.00001;

655
656
657
    template <
        layer_mode mode
        >
658
659
660
    class bn_
    {
    public:
661
662
663
664
        explicit bn_(
            unsigned long window_size,
            double eps_ = DEFAULT_BATCH_NORM_EPS
        ) : 
665
666
667
            num_updates(0), 
            running_stats_window_size(window_size),
            learning_rate_multiplier(1),
668
669
            weight_decay_multiplier(0),
            eps(eps_)
670
671
        {}

672
        bn_() : bn_(1000) {}
673
674
675

        layer_mode get_mode() const { return mode; }
        unsigned long get_running_stats_window_size () const { return running_stats_window_size; }
676
        double get_eps() const { return eps; }
677

678
679
680
681
682
683
        double get_learning_rate_multiplier () const  { return learning_rate_multiplier; }
        double get_weight_decay_multiplier () const   { return weight_decay_multiplier; }
        void set_learning_rate_multiplier(double val) { learning_rate_multiplier = val; }
        void set_weight_decay_multiplier(double val)  { weight_decay_multiplier  = val; }


684
685
686
        template <typename SUBNET>
        void setup (const SUBNET& sub)
        {
687
            if (mode == FC_MODE)
688
689
690
691
692
693
694
695
696
697
            {
                gamma = alias_tensor(1,
                                sub.get_output().k(),
                                sub.get_output().nr(),
                                sub.get_output().nc());
            }
            else
            {
                gamma = alias_tensor(1, sub.get_output().k());
            }
Davis King's avatar
Davis King committed
698
699
700
701
702
703
            beta = gamma;

            params.set_size(gamma.size()+beta.size());

            gamma(params,0) = 1;
            beta(params,gamma.size()) = 0;
704

705
            running_means.copy_size(gamma(params,0));
706
            running_variances.copy_size(gamma(params,0));
707
            running_means = 0;
708
            running_variances = 1;
709
            num_updates = 0;
710
711
712
713
714
        }

        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
        {
Davis King's avatar
Davis King committed
715
716
            auto g = gamma(params,0);
            auto b = beta(params,gamma.size());
717
718
            if (sub.get_output().num_samples() > 1)
            {
719
                const double decay = 1.0 - num_updates/(num_updates+1.0);
720
721
                if (num_updates <running_stats_window_size)
                    ++num_updates;
722
                if (mode == FC_MODE)
723
                    tt::batch_normalize(eps, output, means, invstds, decay, running_means, running_variances, sub.get_output(), g, b);
724
                else 
725
                    tt::batch_normalize_conv(eps, output, means, invstds, decay, running_means, running_variances, sub.get_output(), g, b);
726
727
728
            }
            else // we are running in testing mode so we just linearly scale the input tensor.
            {
729
                if (mode == FC_MODE)
730
                    tt::batch_normalize_inference(eps, output, sub.get_output(), g, b, running_means, running_variances);
731
                else
732
                    tt::batch_normalize_conv_inference(eps, output, sub.get_output(), g, b, running_means, running_variances);
733
            }
734
735
736
737
738
        } 

        template <typename SUBNET>
        void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
        {
Davis King's avatar
Davis King committed
739
740
741
            auto g = gamma(params,0);
            auto g_grad = gamma(params_grad, 0);
            auto b_grad = beta(params_grad, gamma.size());
742
            if (mode == FC_MODE)
743
                tt::batch_normalize_gradient(eps, gradient_input, means, invstds, sub.get_output(), g, sub.get_gradient_input(), g_grad, b_grad );
744
            else
745
                tt::batch_normalize_conv_gradient(eps, gradient_input, means, invstds, sub.get_output(), g, sub.get_gradient_input(), g_grad, b_grad );
746
747
748
749
750
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

Davis King's avatar
Davis King committed
751
752
        friend void serialize(const bn_& item, std::ostream& out)
        {
753
            if (mode == CONV_MODE)
754
                serialize("bn_con2", out);
755
            else // if FC_MODE
756
                serialize("bn_fc2", out);
Davis King's avatar
Davis King committed
757
758
759
760
761
            serialize(item.params, out);
            serialize(item.gamma, out);
            serialize(item.beta, out);
            serialize(item.means, out);
            serialize(item.invstds, out);
762
            serialize(item.running_means, out);
763
            serialize(item.running_variances, out);
764
765
            serialize(item.num_updates, out);
            serialize(item.running_stats_window_size, out);
766
767
            serialize(item.learning_rate_multiplier, out);
            serialize(item.weight_decay_multiplier, out);
768
            serialize(item.eps, out);
Davis King's avatar
Davis King committed
769
770
771
772
773
774
775
        }

        friend void deserialize(bn_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "bn_")
776
777
778
            {
                if (mode == CONV_MODE) 
                {
779
                    if (version != "bn_con" && version != "bn_con2")
780
781
782
783
                        throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::bn_.");
                }
                else // must be in FC_MODE
                {
784
                    if (version != "bn_fc" && version != "bn_fc2")
785
786
787
788
                        throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::bn_.");
                }
            }

Davis King's avatar
Davis King committed
789
790
791
792
793
            deserialize(item.params, in);
            deserialize(item.gamma, in);
            deserialize(item.beta, in);
            deserialize(item.means, in);
            deserialize(item.invstds, in);
794
            deserialize(item.running_means, in);
795
            deserialize(item.running_variances, in);
796
797
            deserialize(item.num_updates, in);
            deserialize(item.running_stats_window_size, in);
798
799
800
801
802
803
804
805
806

            // if this is the older "bn_" version then check its saved mode value and make
            // sure it is the one we are really using.  
            if (version == "bn_")
            {
                int _mode;
                deserialize(_mode, in);
                if (mode != (layer_mode)_mode) throw serialization_error("Wrong mode found while deserializing dlib::bn_");

807
                // We also need to flip the running_variances around since the previous
808
                // format saved the inverse standard deviations instead of variances.
809
                item.running_variances = 1.0f/squared(mat(item.running_variances)) - DEFAULT_BATCH_NORM_EPS;
810
            }
811
812
813
814
            else if (version == "bn_con2" || version == "bn_fc2")
            {
                deserialize(item.learning_rate_multiplier, in);
                deserialize(item.weight_decay_multiplier, in);
815
                deserialize(item.eps, in);
816
817
818
819
820
821
822
            }
            else
            {
                // Previous versions didn't have these parameters, so they were
                // implicitly 1.
                item.learning_rate_multiplier = 1;
                item.weight_decay_multiplier = 1;
823
824

                item.eps = DEFAULT_BATCH_NORM_EPS;
825
            }
Davis King's avatar
Davis King committed
826
827
        }

828
829
830
        friend std::ostream& operator<<(std::ostream& out, const bn_& item)
        {
            if (mode == CONV_MODE)
831
                out << "bn_con  ";
832
            else
833
                out << "bn_fc   ";
834
            out << " eps="<<item.eps;
835
836
            out << " learning_rate_mult="<<item.learning_rate_multiplier;
            out << " weight_decay_mult="<<item.weight_decay_multiplier;
837
838
839
            return out;
        }

840
841
    private:

842
843
        friend class affine_;

844
        resizable_tensor params;
Davis King's avatar
Davis King committed
845
        alias_tensor gamma, beta;
846
        resizable_tensor means, running_means;
847
        resizable_tensor invstds, running_variances;
848
849
        unsigned long num_updates;
        unsigned long running_stats_window_size;
850
851
        double learning_rate_multiplier;
        double weight_decay_multiplier;
852
        double eps;
853
854
855
    };

    template <typename SUBNET>
856
857
858
    using bn_con = add_layer<bn_<CONV_MODE>, SUBNET>;
    template <typename SUBNET>
    using bn_fc = add_layer<bn_<FC_MODE>, SUBNET>;
859

860
861
// ----------------------------------------------------------------------------------------

862
863
    enum fc_bias_mode
    {
864
865
866
867
        FC_HAS_BIAS = 0,
        FC_NO_BIAS = 1
    };

868
869
870
871
872
873
874
875
876
877
    struct num_fc_outputs
    {
        num_fc_outputs(unsigned long n) : num_outputs(n) {}
        unsigned long num_outputs;
    };

    template <
        unsigned long num_outputs_,
        fc_bias_mode bias_mode
        >
878
879
    class fc_
    {
880
881
        static_assert(num_outputs_ > 0, "The number of outputs from a fc_ layer must be > 0");

882
    public:
883
884
885
886
887
888
        fc_(num_fc_outputs o) : num_outputs(o.num_outputs), num_inputs(0),
            learning_rate_multiplier(1),
            weight_decay_multiplier(1),
            bias_learning_rate_multiplier(1),
            bias_weight_decay_multiplier(0)
        {}
889

890
891
892
893
894
895
896
897
898
899
900
        fc_() : fc_(num_fc_outputs(num_outputs_)) {}

        double get_learning_rate_multiplier () const  { return learning_rate_multiplier; }
        double get_weight_decay_multiplier () const   { return weight_decay_multiplier; }
        void set_learning_rate_multiplier(double val) { learning_rate_multiplier = val; }
        void set_weight_decay_multiplier(double val)  { weight_decay_multiplier  = val; }

        double get_bias_learning_rate_multiplier () const  { return bias_learning_rate_multiplier; }
        double get_bias_weight_decay_multiplier () const   { return bias_weight_decay_multiplier; }
        void set_bias_learning_rate_multiplier(double val) { bias_learning_rate_multiplier = val; }
        void set_bias_weight_decay_multiplier(double val)  { bias_weight_decay_multiplier  = val; }
901
902
903
904

        unsigned long get_num_outputs (
        ) const { return num_outputs; }

905
906
907
        fc_bias_mode get_bias_mode (
        ) const { return bias_mode; }

Davis King's avatar
Davis King committed
908
909
        template <typename SUBNET>
        void setup (const SUBNET& sub)
910
911
        {
            num_inputs = sub.get_output().nr()*sub.get_output().nc()*sub.get_output().k();
912
913
914
915
            if (bias_mode == FC_HAS_BIAS)
                params.set_size(num_inputs+1, num_outputs);
            else
                params.set_size(num_inputs, num_outputs);
916

917
            dlib::rand rnd(std::rand());
918
            randomize_parameters(params, num_inputs+num_outputs, rnd);
919
920
921
922
923
924
925
926
927

            weights = alias_tensor(num_inputs, num_outputs);

            if (bias_mode == FC_HAS_BIAS)
            {
                biases = alias_tensor(1,num_outputs);
                // set the initial bias values to zero
                biases(params,weights.size()) = 0;
            }
928
929
        }

Davis King's avatar
Davis King committed
930
931
        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
932
        {
933
            output.set_size(sub.get_output().num_samples(), num_outputs);
934

935
936
937
938
939
940
941
            auto w = weights(params, 0);
            tt::gemm(0,output, 1,sub.get_output(),false, w,false);
            if (bias_mode == FC_HAS_BIAS)
            {
                auto b = biases(params, weights.size());
                tt::add(1,output,1,b);
            }
942
943
        } 

Davis King's avatar
Davis King committed
944
        template <typename SUBNET>
945
        void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
946
        {
947
948
            // no point computing the parameter gradients if they won't be used.
            if (learning_rate_multiplier != 0)
949
            {
950
951
952
953
954
955
956
957
958
959
                // compute the gradient of the weight parameters.  
                auto pw = weights(params_grad, 0);
                tt::gemm(0,pw, 1,sub.get_output(),true, gradient_input,false);

                if (bias_mode == FC_HAS_BIAS)
                {
                    // compute the gradient of the bias parameters.  
                    auto pb = biases(params_grad, weights.size());
                    tt::assign_bias_gradient(pb, gradient_input);
                }
960
            }
961
962

            // compute the gradient for the data
963
964
            auto w = weights(params, 0);
            tt::gemm(1,sub.get_gradient_input(), 1,gradient_input,false, w,true);
965
966
967
968
969
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

970
971
        friend void serialize(const fc_& item, std::ostream& out)
        {
972
            serialize("fc_2", out);
973
974
975
            serialize(item.num_outputs, out);
            serialize(item.num_inputs, out);
            serialize(item.params, out);
976
977
            serialize(item.weights, out);
            serialize(item.biases, out);
978
            serialize((int)bias_mode, out);
979
980
981
982
            serialize(item.learning_rate_multiplier, out);
            serialize(item.weight_decay_multiplier, out);
            serialize(item.bias_learning_rate_multiplier, out);
            serialize(item.bias_weight_decay_multiplier, out);
983
984
985
986
987
988
        }

        friend void deserialize(fc_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
989
            if (version != "fc_" && version != "fc_2")
990
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::fc_.");
991

992
993
994
            deserialize(item.num_outputs, in);
            deserialize(item.num_inputs, in);
            deserialize(item.params, in);
995
996
997
998
            deserialize(item.weights, in);
            deserialize(item.biases, in);
            int bmode = 0;
            deserialize(bmode, in);
999
            if (bias_mode != (fc_bias_mode)bmode) throw serialization_error("Wrong fc_bias_mode found while deserializing dlib::fc_");
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
            if (version == "fc_2")
            {
                deserialize(item.learning_rate_multiplier, in);
                deserialize(item.weight_decay_multiplier, in);
                deserialize(item.bias_learning_rate_multiplier, in);
                deserialize(item.bias_weight_decay_multiplier, in);
            }
            else
            {
                // Previous versions didn't have these parameters, so they were
                // implicitly 1.
                item.learning_rate_multiplier = 1;
                item.weight_decay_multiplier = 1;
                item.bias_learning_rate_multiplier = 1;
                item.bias_weight_decay_multiplier = 1;
            }
1016
1017
        }

1018
1019
1020
1021
1022
1023
1024
        friend std::ostream& operator<<(std::ostream& out, const fc_& item)
        {
            if (bias_mode == FC_HAS_BIAS)
            {
                out << "fc\t ("
                    << "num_outputs="<<item.num_outputs
                    << ")";
1025
1026
1027
1028
                out << " learning_rate_mult="<<item.learning_rate_multiplier;
                out << " weight_decay_mult="<<item.weight_decay_multiplier;
                out << " bias_learning_rate_mult="<<item.bias_learning_rate_multiplier;
                out << " bias_weight_decay_mult="<<item.bias_weight_decay_multiplier;
1029
1030
1031
1032
1033
1034
            }
            else
            {
                out << "fc_no_bias ("
                    << "num_outputs="<<item.num_outputs
                    << ")";
1035
1036
                out << " learning_rate_mult="<<item.learning_rate_multiplier;
                out << " weight_decay_mult="<<item.weight_decay_multiplier;
1037
1038
1039
1040
            }
            return out;
        }

1041
1042
1043
1044
1045
    private:

        unsigned long num_outputs;
        unsigned long num_inputs;
        resizable_tensor params;
1046
        alias_tensor weights, biases;
1047
1048
1049
1050
        double learning_rate_multiplier;
        double weight_decay_multiplier;
        double bias_learning_rate_multiplier;
        double bias_weight_decay_multiplier;
1051
1052
    };

1053
1054
1055
1056
    template <
        unsigned long num_outputs,
        typename SUBNET
        >
1057
1058
1059
1060
1061
1062
1063
    using fc = add_layer<fc_<num_outputs,FC_HAS_BIAS>, SUBNET>;

    template <
        unsigned long num_outputs,
        typename SUBNET
        >
    using fc_no_bias = add_layer<fc_<num_outputs,FC_NO_BIAS>, SUBNET>;
1064

Davis King's avatar
Davis King committed
1065
1066
1067
1068
1069
1070
1071
1072
// ----------------------------------------------------------------------------------------

    class dropout_
    {
    public:
        explicit dropout_(
            float drop_rate_ = 0.5
        ) :
1073
1074
            drop_rate(drop_rate_),
            rnd(std::rand())
Davis King's avatar
Davis King committed
1075
        {
1076
            DLIB_CASSERT(0 <= drop_rate && drop_rate <= 1,"");
Davis King's avatar
Davis King committed
1077
1078
1079
1080
1081
1082
        }

        // We have to add a copy constructor and assignment operator because the rnd object
        // is non-copyable.
        dropout_(
            const dropout_& item
1083
        ) : drop_rate(item.drop_rate), mask(item.mask), rnd(std::rand())
Davis King's avatar
Davis King committed
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
        {}

        dropout_& operator= (
            const dropout_& item
        )
        {
            if (this == &item)
                return *this;

            drop_rate = item.drop_rate;
            mask = item.mask;
            return *this;
        }

        float get_drop_rate (
        ) const { return drop_rate; }

        template <typename SUBNET>
        void setup (const SUBNET& /*sub*/)
        {
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            // create a random mask and use it to filter the data
            mask.copy_size(input);
            rnd.fill_uniform(mask);
            tt::threshold(mask, drop_rate);
1112
            tt::multiply(false, output, input, mask);
Davis King's avatar
Davis King committed
1113
1114
1115
1116
1117
1118
1119
1120
        } 

        void backward_inplace(
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& /*params_grad*/
        )
        {
1121
1122
1123
1124
            if (is_same_object(gradient_input, data_grad))
                tt::multiply(false, data_grad, mask, gradient_input);
            else
                tt::multiply(true, data_grad, mask, gradient_input);
Davis King's avatar
Davis King committed
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const dropout_& item, std::ostream& out)
        {
            serialize("dropout_", out);
            serialize(item.drop_rate, out);
            serialize(item.mask, out);
        }

        friend void deserialize(dropout_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "dropout_")
1142
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::dropout_.");
Davis King's avatar
Davis King committed
1143
1144
1145
1146
            deserialize(item.drop_rate, in);
            deserialize(item.mask, in);
        }

1147
1148
1149
1150
1151
1152
1153
1154
        friend std::ostream& operator<<(std::ostream& out, const dropout_& item)
        {
            out << "dropout\t ("
                << "drop_rate="<<item.drop_rate
                << ")";
            return out;
        }

Davis King's avatar
Davis King committed
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
    private:
        float drop_rate;
        resizable_tensor mask;

        tt::tensor_rand rnd;
        resizable_tensor params; // unused
    };


    template <typename SUBNET>
    using dropout = add_layer<dropout_, SUBNET>;

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
// ----------------------------------------------------------------------------------------

    class multiply_
    {
    public:
        explicit multiply_(
            float val_ = 0.5
        ) :
            val(val_)
        {
        }

        multiply_ (
            const dropout_& item
        ) : val(1-item.get_drop_rate()) {}

        float get_multiply_value (
        ) const { return val; }

        template <typename SUBNET>
        void setup (const SUBNET& /*sub*/)
        {
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
1193
            tt::affine_transform(output, input, val);
1194
1195
1196
1197
1198
1199
1200
1201
        } 

        void backward_inplace(
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& /*params_grad*/
        )
        {
1202
1203
1204
1205
            if (is_same_object(gradient_input, data_grad))
                tt::affine_transform(data_grad, gradient_input, val);
            else
                tt::affine_transform(data_grad, data_grad, gradient_input, 1, val);
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const multiply_& item, std::ostream& out)
        {
            serialize("multiply_", out);
            serialize(item.val, out);
        }

        friend void deserialize(multiply_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version == "dropout_")
            {
                // Since we can build a multiply_ from a dropout_ we check if that's what
                // is in the stream and if so then just convert it right here.
                unserialize sin(version, in);
                dropout_ temp;
                deserialize(temp, sin);
                item = temp;
                return;
            }

            if (version != "multiply_")
1233
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::multiply_.");
1234
1235
1236
            deserialize(item.val, in);
        }

1237
1238
1239
1240
1241
1242
1243
1244
        friend std::ostream& operator<<(std::ostream& out, const multiply_& item)
        {
            out << "multiply ("
                << "val="<<item.val
                << ")";
            return out;
        }

1245
1246
1247
1248
1249
1250
1251
1252
    private:
        float val;
        resizable_tensor params; // unused
    };

    template <typename SUBNET>
    using multiply = add_layer<multiply_, SUBNET>;

Davis King's avatar
Davis King committed
1253
1254
1255
1256
1257
1258
// ----------------------------------------------------------------------------------------

    class affine_
    {
    public:
        affine_(
1259
1260
1261
        ) : mode(FC_MODE)
        {
        }
Davis King's avatar
Davis King committed
1262

1263
        affine_(
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
            layer_mode mode_
        ) : mode(mode_)
        {
        }

        template <
            layer_mode bnmode
            >
        affine_(
            const bn_<bnmode>& item
1274
1275
1276
1277
        )
        {
            gamma = item.gamma;
            beta = item.beta;
1278
            mode = bnmode;
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288

            params.copy_size(item.params);

            auto g = gamma(params,0);
            auto b = beta(params,gamma.size());
            
            resizable_tensor temp(item.params);
            auto sg = gamma(temp,0);
            auto sb = beta(temp,gamma.size());

1289
            g = pointwise_multiply(mat(sg), 1.0f/sqrt(mat(item.running_variances)+item.get_eps()));
1290
1291
1292
1293
1294
            b = mat(sb) - pointwise_multiply(mat(g), mat(item.running_means));
        }

        layer_mode get_mode() const { return mode; }

Davis King's avatar
Davis King committed
1295
1296
1297
        template <typename SUBNET>
        void setup (const SUBNET& sub)
        {
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
            if (mode == FC_MODE)
            {
                gamma = alias_tensor(1,
                                sub.get_output().k(),
                                sub.get_output().nr(),
                                sub.get_output().nc());
            }
            else
            {
                gamma = alias_tensor(1, sub.get_output().k());
            }
Davis King's avatar
Davis King committed
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
            beta = gamma;

            params.set_size(gamma.size()+beta.size());

            gamma(params,0) = 1;
            beta(params,gamma.size()) = 0;
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            auto g = gamma(params,0);
            auto b = beta(params,gamma.size());
1321
1322
1323
1324
            if (mode == FC_MODE)
                tt::affine_transform(output, input, g, b);
            else
                tt::affine_transform_conv(output, input, g, b);
Davis King's avatar
Davis King committed
1325
1326
1327
1328
1329
        } 

        void backward_inplace(
            const tensor& gradient_input, 
            tensor& data_grad, 
Davis King's avatar
Davis King committed
1330
            tensor& /*params_grad*/
Davis King's avatar
Davis King committed
1331
1332
1333
1334
1335
1336
        )
        {
            auto g = gamma(params,0);
            auto b = beta(params,gamma.size());

            // We are computing the gradient of dot(gradient_input, computed_output*g + b)
1337
1338
            if (mode == FC_MODE)
            {
1339
1340
1341
1342
                if (is_same_object(gradient_input, data_grad))
                    tt::multiply(false, data_grad, gradient_input, g);
                else
                    tt::multiply(true, data_grad, gradient_input, g);
1343
1344
1345
            }
            else
            {
1346
1347
1348
1349
                if (is_same_object(gradient_input, data_grad))
                    tt::multiply_conv(false, data_grad, gradient_input, g);
                else
                    tt::multiply_conv(true, data_grad, gradient_input, g);
1350
            }
Davis King's avatar
Davis King committed
1351
1352
        }

1353
1354
        const tensor& get_layer_params() const { return empty_params; }
        tensor& get_layer_params() { return empty_params; }
Davis King's avatar
Davis King committed
1355
1356
1357
1358
1359
1360
1361

        friend void serialize(const affine_& item, std::ostream& out)
        {
            serialize("affine_", out);
            serialize(item.params, out);
            serialize(item.gamma, out);
            serialize(item.beta, out);
1362
            serialize((int)item.mode, out);
Davis King's avatar
Davis King committed
1363
1364
1365
1366
1367
1368
        }

        friend void deserialize(affine_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
1369
            if (version == "bn_con" || version == "bn_con2")
1370
1371
1372
1373
1374
1375
1376
1377
1378
            {
                // Since we can build an affine_ from a bn_ we check if that's what is in
                // the stream and if so then just convert it right here.
                unserialize sin(version, in);
                bn_<CONV_MODE> temp;
                deserialize(temp, sin);
                item = temp;
                return;
            }
1379
            else if (version == "bn_fc" || version == "bn_fc2")
1380
1381
1382
1383
            {
                // Since we can build an affine_ from a bn_ we check if that's what is in
                // the stream and if so then just convert it right here.
                unserialize sin(version, in);
1384
                bn_<FC_MODE> temp;
1385
1386
1387
1388
1389
                deserialize(temp, sin);
                item = temp;
                return;
            }

Davis King's avatar
Davis King committed
1390
            if (version != "affine_")
1391
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::affine_.");
Davis King's avatar
Davis King committed
1392
1393
1394
            deserialize(item.params, in);
            deserialize(item.gamma, in);
            deserialize(item.beta, in);
1395
1396
1397
            int mode;
            deserialize(mode, in);
            item.mode = (layer_mode)mode;
Davis King's avatar
Davis King committed
1398
1399
        }

1400
1401
1402
1403
1404
1405
        friend std::ostream& operator<<(std::ostream& out, const affine_& )
        {
            out << "affine";
            return out;
        }

Davis King's avatar
Davis King committed
1406
    private:
1407
        resizable_tensor params, empty_params; 
Davis King's avatar
Davis King committed
1408
        alias_tensor gamma, beta;
1409
        layer_mode mode;
Davis King's avatar
Davis King committed
1410
1411
1412
    };

    template <typename SUBNET>
1413
    using affine = add_layer<affine_, SUBNET>;
Davis King's avatar
Davis King committed
1414

Davis King's avatar
Davis King committed
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
// ----------------------------------------------------------------------------------------

    template <
        template<typename> class tag
        >
    class add_prev_
    {
    public:
        add_prev_() 
        {
        }

        template <typename SUBNET>
        void setup (const SUBNET& /*sub*/)
        {
        }

        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
        {
            output.copy_size(sub.get_output());
            tt::add(output, sub.get_output(), layer<tag>(sub).get_output());
        }

        template <typename SUBNET>
        void backward(const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
        {
            // The gradient just flows backwards to the two layers that forward() added
            // together.
            tt::add(sub.get_gradient_input(), sub.get_gradient_input(), gradient_input);
            tt::add(layer<tag>(sub).get_gradient_input(), layer<tag>(sub).get_gradient_input(), gradient_input);
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const add_prev_& , std::ostream& out)
        {
            serialize("add_prev_", out);
        }

        friend void deserialize(add_prev_& , std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "add_prev_")
1461
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::add_prev_.");
Davis King's avatar
Davis King committed
1462
1463
        }

1464
1465
1466
1467
1468
1469
1470
        friend std::ostream& operator<<(std::ostream& out, const add_prev_& item)
        {
            out << "add_prev";
            return out;
        }


Davis King's avatar
Davis King committed
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
    private:
        resizable_tensor params;
    };

    template <
        template<typename> class tag,
        typename SUBNET
        >
    using add_prev = add_layer<add_prev_<tag>, SUBNET>;

    template <typename SUBNET> using add_prev1  = add_prev<tag1, SUBNET>;
    template <typename SUBNET> using add_prev2  = add_prev<tag2, SUBNET>;
    template <typename SUBNET> using add_prev3  = add_prev<tag3, SUBNET>;
    template <typename SUBNET> using add_prev4  = add_prev<tag4, SUBNET>;
    template <typename SUBNET> using add_prev5  = add_prev<tag5, SUBNET>;
    template <typename SUBNET> using add_prev6  = add_prev<tag6, SUBNET>;
    template <typename SUBNET> using add_prev7  = add_prev<tag7, SUBNET>;
    template <typename SUBNET> using add_prev8  = add_prev<tag8, SUBNET>;
    template <typename SUBNET> using add_prev9  = add_prev<tag9, SUBNET>;
    template <typename SUBNET> using add_prev10 = add_prev<tag10, SUBNET>;

    using add_prev1_  = add_prev_<tag1>;
    using add_prev2_  = add_prev_<tag2>;
    using add_prev3_  = add_prev_<tag3>;
    using add_prev4_  = add_prev_<tag4>;
    using add_prev5_  = add_prev_<tag5>;
    using add_prev6_  = add_prev_<tag6>;
    using add_prev7_  = add_prev_<tag7>;
    using add_prev8_  = add_prev_<tag8>;
    using add_prev9_  = add_prev_<tag9>;
    using add_prev10_ = add_prev_<tag10>;

1503
1504
1505
1506
1507
1508
1509
1510
1511
// ----------------------------------------------------------------------------------------

    class relu_
    {
    public:
        relu_() 
        {
        }

Davis King's avatar
Davis King committed
1512
        template <typename SUBNET>
Davis King's avatar
Davis King committed
1513
        void setup (const SUBNET& /*sub*/)
1514
1515
1516
        {
        }

1517
        void forward_inplace(const tensor& input, tensor& output)
1518
        {
1519
            tt::relu(output, input);
1520
1521
        } 

1522
1523
1524
1525
        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
1526
            tensor& 
1527
        )
1528
        {
1529
            tt::relu_gradient(data_grad, computed_output, gradient_input);
1530
1531
1532
1533
1534
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

Davis King's avatar
Davis King committed
1535
        friend void serialize(const relu_& , std::ostream& out)
1536
        {
1537
            serialize("relu_", out);
1538
1539
        }

Davis King's avatar
Davis King committed
1540
        friend void deserialize(relu_& , std::istream& in)
1541
        {
1542
1543
1544
            std::string version;
            deserialize(version, in);
            if (version != "relu_")
1545
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::relu_.");
1546
1547
        }

1548
1549
1550
1551
1552
1553
1554
        friend std::ostream& operator<<(std::ostream& out, const relu_& )
        {
            out << "relu";
            return out;
        }


1555
1556
1557
1558
1559
1560
1561
1562
    private:
        resizable_tensor params;
    };


    template <typename SUBNET>
    using relu = add_layer<relu_, SUBNET>;

Davis King's avatar
Davis King committed
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
// ----------------------------------------------------------------------------------------

    class prelu_
    {
    public:
        explicit prelu_(
            float initial_param_value_ = 0.25
        ) : initial_param_value(initial_param_value_)
        {
        }

1574
1575
1576
        float get_initial_param_value (
        ) const { return initial_param_value; }

Davis King's avatar
Davis King committed
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
        template <typename SUBNET>
        void setup (const SUBNET& /*sub*/)
        {
            params.set_size(1);
            params = initial_param_value;
        }

        template <typename SUBNET>
        void forward(
            const SUBNET& sub, 
            resizable_tensor& data_output
        )
        {
            data_output.copy_size(sub.get_output());
            tt::prelu(data_output, sub.get_output(), params);
        }

        template <typename SUBNET>
        void backward(
            const tensor& gradient_input, 
            SUBNET& sub, 
            tensor& params_grad
        )
        {
            tt::prelu_gradient(sub.get_gradient_input(), sub.get_output(), 
                gradient_input, params, params_grad);
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const prelu_& item, std::ostream& out)
        {
            serialize("prelu_", out);
            serialize(item.params, out);
            serialize(item.initial_param_value, out);
        }

        friend void deserialize(prelu_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "prelu_")
1620
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::prelu_.");
Davis King's avatar
Davis King committed
1621
1622
1623
1624
            deserialize(item.params, in);
            deserialize(item.initial_param_value, in);
        }

1625
1626
1627
1628
1629
1630
1631
1632
        friend std::ostream& operator<<(std::ostream& out, const prelu_& item)
        {
            out << "prelu\t ("
                << "initial_param_value="<<item.initial_param_value
                << ")";
            return out;
        }

Davis King's avatar
Davis King committed
1633
1634
1635
1636
1637
1638
1639
1640
    private:
        resizable_tensor params;
        float initial_param_value;
    };

    template <typename SUBNET>
    using prelu = add_layer<prelu_, SUBNET>;

1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
// ----------------------------------------------------------------------------------------

    class sig_
    {
    public:
        sig_() 
        {
        }

        template <typename SUBNET>
Davis King's avatar
Davis King committed
1651
        void setup (const SUBNET& /*sub*/)
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
        {
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            tt::sigmoid(output, input);
        } 

        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& 
        )
        {
            tt::sigmoid_gradient(data_grad, computed_output, gradient_input);
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const sig_& , std::ostream& out)
        {
            serialize("sig_", out);
        }

        friend void deserialize(sig_& , std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "sig_")
1683
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::sig_.");
1684
        }
1685

1686
1687
1688
1689
1690
1691
1692
        friend std::ostream& operator<<(std::ostream& out, const sig_& )
        {
            out << "sig";
            return out;
        }


1693
    private:
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
        resizable_tensor params;
    };


    template <typename SUBNET>
    using sig = add_layer<sig_, SUBNET>;

// ----------------------------------------------------------------------------------------

    class htan_
    {
    public:
        htan_() 
        {
        }

        template <typename SUBNET>
Davis King's avatar
Davis King committed
1711
        void setup (const SUBNET& /*sub*/)
1712
1713
1714
1715
1716
1717
1718
        {
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            tt::tanh(output, input);
        } 
1719

1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& 
        )
        {
            tt::tanh_gradient(data_grad, computed_output, gradient_input);
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const htan_& , std::ostream& out)
        {
            serialize("htan_", out);
        }

        friend void deserialize(htan_& , std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "htan_")
1743
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::htan_.");
1744
1745
        }

1746
1747
1748
1749
1750
1751
1752
        friend std::ostream& operator<<(std::ostream& out, const htan_& )
        {
            out << "htan";
            return out;
        }


1753
    private:
1754
1755
1756
        resizable_tensor params;
    };

1757

Davis King's avatar
Davis King committed
1758
    template <typename SUBNET>
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
    using htan = add_layer<htan_, SUBNET>;

// ----------------------------------------------------------------------------------------

    class softmax_
    {
    public:
        softmax_() 
        {
        }

        template <typename SUBNET>
Davis King's avatar
Davis King committed
1771
        void setup (const SUBNET& /*sub*/)
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
        {
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            tt::softmax(output, input);
        } 

        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& 
        )
        {
            tt::softmax_gradient(data_grad, computed_output, gradient_input);
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const softmax_& , std::ostream& out)
        {
            serialize("softmax_", out);
        }

        friend void deserialize(softmax_& , std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "softmax_")
1803
                throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::softmax_.");
1804
1805
        }

1806
1807
1808
1809
1810
1811
        friend std::ostream& operator<<(std::ostream& out, const softmax_& )
        {
            out << "softmax";
            return out;
        }

1812
1813
1814
1815
1816
1817
    private:
        resizable_tensor params;
    };

    template <typename SUBNET>
    using softmax = add_layer<softmax_, SUBNET>;
1818
1819
1820
1821
1822

// ----------------------------------------------------------------------------------------

}

1823
#endif // DLIB_DNn_LAYERS_H_
1824
1825