Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
e5ad9590
Commit
e5ad9590
authored
May 23, 2016
by
Davis King
Browse files
Added bias learning rate and weight decay multipliers to bn_ layers
parent
b6b83798
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
85 additions
and
6 deletions
+85
-6
dlib/dnn/layers.h
dlib/dnn/layers.h
+15
-0
dlib/dnn/layers_abstract.h
dlib/dnn/layers_abstract.h
+48
-6
dlib/dnn/solvers.h
dlib/dnn/solvers.h
+22
-0
No files found.
dlib/dnn/layers.h
View file @
e5ad9590
...
@@ -666,6 +666,8 @@ namespace dlib
...
@@ -666,6 +666,8 @@ namespace dlib
running_stats_window_size
(
window_size
),
running_stats_window_size
(
window_size
),
learning_rate_multiplier
(
1
),
learning_rate_multiplier
(
1
),
weight_decay_multiplier
(
0
),
weight_decay_multiplier
(
0
),
bias_learning_rate_multiplier
(
1
),
bias_weight_decay_multiplier
(
1
),
eps
(
eps_
)
eps
(
eps_
)
{}
{}
...
@@ -680,6 +682,11 @@ namespace dlib
...
@@ -680,6 +682,11 @@ namespace dlib
void
set_learning_rate_multiplier
(
double
val
)
{
learning_rate_multiplier
=
val
;
}
void
set_learning_rate_multiplier
(
double
val
)
{
learning_rate_multiplier
=
val
;
}
void
set_weight_decay_multiplier
(
double
val
)
{
weight_decay_multiplier
=
val
;
}
void
set_weight_decay_multiplier
(
double
val
)
{
weight_decay_multiplier
=
val
;
}
double
get_bias_learning_rate_multiplier
()
const
{
return
bias_learning_rate_multiplier
;
}
double
get_bias_weight_decay_multiplier
()
const
{
return
bias_weight_decay_multiplier
;
}
void
set_bias_learning_rate_multiplier
(
double
val
)
{
bias_learning_rate_multiplier
=
val
;
}
void
set_bias_weight_decay_multiplier
(
double
val
)
{
bias_weight_decay_multiplier
=
val
;
}
template
<
typename
SUBNET
>
template
<
typename
SUBNET
>
void
setup
(
const
SUBNET
&
sub
)
void
setup
(
const
SUBNET
&
sub
)
...
@@ -765,6 +772,8 @@ namespace dlib
...
@@ -765,6 +772,8 @@ namespace dlib
serialize
(
item
.
running_stats_window_size
,
out
);
serialize
(
item
.
running_stats_window_size
,
out
);
serialize
(
item
.
learning_rate_multiplier
,
out
);
serialize
(
item
.
learning_rate_multiplier
,
out
);
serialize
(
item
.
weight_decay_multiplier
,
out
);
serialize
(
item
.
weight_decay_multiplier
,
out
);
serialize
(
item
.
bias_learning_rate_multiplier
,
out
);
serialize
(
item
.
bias_weight_decay_multiplier
,
out
);
serialize
(
item
.
eps
,
out
);
serialize
(
item
.
eps
,
out
);
}
}
...
@@ -812,6 +821,8 @@ namespace dlib
...
@@ -812,6 +821,8 @@ namespace dlib
{
{
deserialize
(
item
.
learning_rate_multiplier
,
in
);
deserialize
(
item
.
learning_rate_multiplier
,
in
);
deserialize
(
item
.
weight_decay_multiplier
,
in
);
deserialize
(
item
.
weight_decay_multiplier
,
in
);
deserialize
(
item
.
bias_learning_rate_multiplier
,
in
);
deserialize
(
item
.
bias_weight_decay_multiplier
,
in
);
deserialize
(
item
.
eps
,
in
);
deserialize
(
item
.
eps
,
in
);
}
}
else
else
...
@@ -834,6 +845,8 @@ namespace dlib
...
@@ -834,6 +845,8 @@ namespace dlib
out
<<
" eps="
<<
item
.
eps
;
out
<<
" eps="
<<
item
.
eps
;
out
<<
" learning_rate_mult="
<<
item
.
learning_rate_multiplier
;
out
<<
" learning_rate_mult="
<<
item
.
learning_rate_multiplier
;
out
<<
" weight_decay_mult="
<<
item
.
weight_decay_multiplier
;
out
<<
" weight_decay_mult="
<<
item
.
weight_decay_multiplier
;
out
<<
" bias_learning_rate_mult="
<<
item
.
bias_learning_rate_multiplier
;
out
<<
" bias_weight_decay_mult="
<<
item
.
bias_weight_decay_multiplier
;
return
out
;
return
out
;
}
}
...
@@ -849,6 +862,8 @@ namespace dlib
...
@@ -849,6 +862,8 @@ namespace dlib
unsigned
long
running_stats_window_size
;
unsigned
long
running_stats_window_size
;
double
learning_rate_multiplier
;
double
learning_rate_multiplier
;
double
weight_decay_multiplier
;
double
weight_decay_multiplier
;
double
bias_learning_rate_multiplier
;
double
bias_weight_decay_multiplier
;
double
eps
;
double
eps
;
};
};
...
...
dlib/dnn/layers_abstract.h
View file @
e5ad9590
...
@@ -856,9 +856,11 @@ namespace dlib
...
@@ -856,9 +856,11 @@ namespace dlib
/*!
/*!
ensures
ensures
- #get_mode() == mode
- #get_mode() == mode
- #get_running_stats_window_size() == 1000
- #get_running_stats_window_size() == 1000
- #get_learning_rate_multiplier() == 1
- #get_learning_rate_multiplier() == 1
- #get_weight_decay_multiplier() == 0
- #get_weight_decay_multiplier() == 0
- #get_bias_learning_rate_multiplier() == 1
- #get_bias_weight_decay_multiplier() == 1
- #get_eps() == tt::DEFAULT_BATCH_NORM_EPS
- #get_eps() == tt::DEFAULT_BATCH_NORM_EPS
!*/
!*/
...
@@ -871,9 +873,11 @@ namespace dlib
...
@@ -871,9 +873,11 @@ namespace dlib
- eps > 0
- eps > 0
ensures
ensures
- #get_mode() == mode
- #get_mode() == mode
- #get_running_stats_window_size() == window_size
- #get_running_stats_window_size() == window_size
- #get_learning_rate_multiplier() == 1
- #get_learning_rate_multiplier() == 1
- #get_weight_decay_multiplier() == 0
- #get_weight_decay_multiplier() == 0
- #get_bias_learning_rate_multiplier() == 1
- #get_bias_weight_decay_multiplier() == 1
- #get_eps() == eps
- #get_eps() == eps
!*/
!*/
...
@@ -953,6 +957,44 @@ namespace dlib
...
@@ -953,6 +957,44 @@ namespace dlib
- #get_weight_decay_multiplier() == val
- #get_weight_decay_multiplier() == val
!*/
!*/
double
get_bias_learning_rate_multiplier
(
)
const
;
/*!
ensures
- returns a multiplier number. The interpretation is that this object is
requesting that the learning rate used to optimize its bias parameters be
multiplied by get_learning_rate_multiplier()*get_bias_learning_rate_multiplier().
!*/
double
get_bias_weight_decay_multiplier
(
)
const
;
/*!
ensures
- returns a multiplier number. The interpretation is that this object is
requesting that the weight decay used to optimize its bias parameters be
multiplied by get_weight_decay_multiplier()*get_bias_weight_decay_multiplier().
!*/
void
set_bias_learning_rate_multiplier
(
double
val
);
/*!
requires
- val >= 0
ensures
- #get_bias_learning_rate_multiplier() == val
!*/
void
set_bias_weight_decay_multiplier
(
double
val
);
/*!
requires
- val >= 0
ensures
- #get_bias_weight_decay_multiplier() == val
!*/
template
<
typename
SUBNET
>
void
setup
(
const
SUBNET
&
sub
);
template
<
typename
SUBNET
>
void
setup
(
const
SUBNET
&
sub
);
template
<
typename
SUBNET
>
void
forward
(
const
SUBNET
&
sub
,
resizable_tensor
&
output
);
template
<
typename
SUBNET
>
void
forward
(
const
SUBNET
&
sub
,
resizable_tensor
&
output
);
template
<
typename
SUBNET
>
void
backward
(
const
tensor
&
gradient_input
,
SUBNET
&
sub
,
tensor
&
params_grad
);
template
<
typename
SUBNET
>
void
backward
(
const
tensor
&
gradient_input
,
SUBNET
&
sub
,
tensor
&
params_grad
);
...
...
dlib/dnn/solvers.h
View file @
e5ad9590
...
@@ -89,6 +89,17 @@ namespace dlib
...
@@ -89,6 +89,17 @@ namespace dlib
return
v
;
return
v
;
}
}
template
<
layer_mode
mode
>
const
tensor
&
operator
()
(
const
float
learning_rate
,
const
bn_
<
mode
>&
l
,
const
tensor
&
params_grad
)
{
update_considering_bias
(
learning_rate
,
l
,
params_grad
,
params_grad
.
size
()
/
2
);
return
v
;
}
friend
void
serialize
(
const
sgd
&
item
,
std
::
ostream
&
out
)
friend
void
serialize
(
const
sgd
&
item
,
std
::
ostream
&
out
)
{
{
serialize
(
"sgd2"
,
out
);
serialize
(
"sgd2"
,
out
);
...
@@ -244,6 +255,17 @@ namespace dlib
...
@@ -244,6 +255,17 @@ namespace dlib
return
s
;
return
s
;
}
}
template
<
layer_mode
mode
>
const
tensor
&
operator
()
(
const
float
learning_rate
,
const
bn_
<
mode
>&
l
,
const
tensor
&
params_grad
)
{
update_considering_bias
(
learning_rate
,
l
,
params_grad
,
params_grad
.
size
()
/
2
);
return
s
;
}
friend
void
serialize
(
const
adam
&
item
,
std
::
ostream
&
out
)
friend
void
serialize
(
const
adam
&
item
,
std
::
ostream
&
out
)
{
{
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment