layers.h 26.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_DNn_LAYERS_H_
#define DLIB_DNn_LAYERS_H_

#include "layers_abstract.h"
#include "tensor.h"
#include "core.h"
#include <iostream>
#include <string>
Davis King's avatar
Davis King committed
11
12
#include "../rand.h"
#include "../string.h"
13
#include "tensor_tools.h"
14
15
16
17
18
19
20
21
22
23


namespace dlib
{

// ----------------------------------------------------------------------------------------

    class con_
    {
    public:
24
25
26
27
28
29
30
31
32
33

        con_ (
        ) : 
            _num_filters(1),
            _nr(3),
            _nc(3),
            _stride_y(1),
            _stride_x(1)
        {}

Davis King's avatar
Davis King committed
34
35
36
37
38
39
40
        con_(
            long num_filters_,
            long nr_,
            long nc_,
            int stride_y_ = 1,
            int stride_x_ = 1
        ) : 
41
42
43
44
45
            _num_filters(num_filters_), 
            _nr(nr_),
            _nc(nc_),
            _stride_y(stride_y_),
            _stride_x(stride_x_)
46
47
        {}

48
49
50
51
52
53
        long num_filters() const { return _num_filters; }
        long nr() const { return _nr; }
        long nc() const { return _nc; }
        long stride_y() const { return _stride_y; }
        long stride_x() const { return _stride_x; }

Davis King's avatar
Davis King committed
54
55
56
57
        con_ (
            const con_& item
        ) : 
            params(item.params),
58
59
60
61
62
            _num_filters(item._num_filters), 
            _nr(item._nr),
            _nc(item._nc),
            _stride_y(item._stride_y),
            _stride_x(item._stride_x),
Davis King's avatar
Davis King committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
            filters(item.filters),
            biases(item.biases)
        {
            // this->conv is non-copyable and basically stateless, so we have to write our
            // own copy to avoid trying to copy it and getting an error.
        }

        con_& operator= (
            const con_& item
        )
        {
            if (this == &item)
                return *this;

            // this->conv is non-copyable and basically stateless, so we have to write our
            // own copy to avoid trying to copy it and getting an error.
            params = item.params;
80
81
82
83
84
            _num_filters = item._num_filters;
            _nr = item._nr;
            _nc = item._nc;
            _stride_y = item._stride_y;
            _stride_x = item._stride_x;
Davis King's avatar
Davis King committed
85
86
87
88
89
            filters = item.filters;
            biases = item.biases;
            return *this;
        }

Davis King's avatar
Davis King committed
90
91
        template <typename SUBNET>
        void setup (const SUBNET& sub)
92
        {
93
94
            long num_inputs = _nr*_nc*sub.get_output().k();
            long num_outputs = _num_filters;
Davis King's avatar
Davis King committed
95
            // allocate params for the filters and also for the filter bias values.
96
            params.set_size(num_inputs*_num_filters + _num_filters);
Davis King's avatar
Davis King committed
97
98
99
100

            dlib::rand rnd("con_"+cast_to_string(num_outputs+num_inputs));
            randomize_parameters(params, num_inputs+num_outputs, rnd);

101
102
            filters = alias_tensor(_num_filters, sub.get_output().k(), _nr, _nc);
            biases = alias_tensor(1,_num_filters);
Davis King's avatar
Davis King committed
103
104
105

            // set the initial bias values to zero
            biases(params,filters.size()) = 0;
106
107
        }

Davis King's avatar
Davis King committed
108
109
        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
110
        {
Davis King's avatar
Davis King committed
111
112
113
            conv(output,
                sub.get_output(),
                filters(params,0),
114
115
                _stride_y,
                _stride_x);
Davis King's avatar
Davis King committed
116
117

            tt::add(1,output,1,biases(params,filters.size()));
118
119
        } 

Davis King's avatar
Davis King committed
120
        template <typename SUBNET>
121
        void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
122
        {
Davis King's avatar
Davis King committed
123
124
125
126
127
            conv.get_gradient_for_data (gradient_input, filters(params,0), sub.get_gradient_input());
            auto filt = filters(params_grad,0);
            conv.get_gradient_for_filters (gradient_input, sub.get_output(), filt);
            auto b = biases(params_grad, filters.size());
            tt::add_conv_bias_gradient(b, gradient_input);
128
129
130
131
132
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

Davis King's avatar
Davis King committed
133
134
135
136
        friend void serialize(const con_& item, std::ostream& out)
        {
            serialize("con_", out);
            serialize(item.params, out);
137
138
139
140
141
            serialize(item._num_filters, out);
            serialize(item._nr, out);
            serialize(item._nc, out);
            serialize(item._stride_y, out);
            serialize(item._stride_y, out);
Davis King's avatar
Davis King committed
142
143
144
145
146
147
148
149
150
151
152
            serialize(item.filters, out);
            serialize(item.biases, out);
        }

        friend void deserialize(con_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "con_")
                throw serialization_error("Unexpected version found while deserializing dlib::con_.");
            deserialize(item.params, in);
153
154
155
156
157
            deserialize(item._num_filters, in);
            deserialize(item._nr, in);
            deserialize(item._nc, in);
            deserialize(item._stride_y, in);
            deserialize(item._stride_y, in);
Davis King's avatar
Davis King committed
158
159
160
161
            deserialize(item.filters, in);
            deserialize(item.biases, in);
        }

162
163
164
    private:

        resizable_tensor params;
165
166
167
168
169
        long _num_filters;
        long _nr;
        long _nc;
        int _stride_y;
        int _stride_x;
Davis King's avatar
Davis King committed
170
171
172
173
        alias_tensor filters, biases;

        tt::tensor_conv conv;

174
175
    };

Davis King's avatar
Davis King committed
176
177
    template <typename SUBNET>
    using con = add_layer<con_, SUBNET>;
178

Davis King's avatar
Davis King committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
// ----------------------------------------------------------------------------------------

    class max_pool_
    {
    public:

        max_pool_ (
        ) : 
            _nr(3),
            _nc(3),
            _stride_y(1),
            _stride_x(1)
        {}

        max_pool_(
            long nr_,
            long nc_,
            int stride_y_ = 1,
            int stride_x_ = 1
        ) : 
            _nr(nr_),
            _nc(nc_),
            _stride_y(stride_y_),
            _stride_x(stride_x_)
        {}

        long nr() const { return _nr; }
        long nc() const { return _nc; }
        long stride_y() const { return _stride_y; }
        long stride_x() const { return _stride_x; }

        max_pool_ (
            const max_pool_& item
        ) : 
            _nr(item._nr),
            _nc(item._nc),
            _stride_y(item._stride_y),
            _stride_x(item._stride_x)
        {
            // this->mp is non-copyable so we have to write our own copy to avoid trying to
            // copy it and getting an error.
            mp.setup(_nr, _nc, _stride_y, _stride_x);
        }

        max_pool_& operator= (
            const max_pool_& item
        )
        {
            if (this == &item)
                return *this;

            // this->mp is non-copyable so we have to write our own copy to avoid trying to
            // copy it and getting an error.
            _nr = item._nr;
            _nc = item._nc;
            _stride_y = item._stride_y;
            _stride_x = item._stride_x;

            mp.setup(_nr, _nc, _stride_y, _stride_x);
            return *this;
        }

        template <typename SUBNET>
        void setup (const SUBNET& /*sub*/)
        {
            mp.setup(_nr, _nc, _stride_y, _stride_x);
        }

        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
        {
            mp(output, sub.get_output());
        } 

        template <typename SUBNET>
        void backward(const tensor& computed_output, const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
        {
            mp.get_gradient(gradient_input, computed_output, sub.get_output(), sub.get_gradient_input());
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const max_pool_& item, std::ostream& out)
        {
            serialize("max_pool_", out);
            serialize(item._nr, out);
            serialize(item._nc, out);
            serialize(item._stride_y, out);
            serialize(item._stride_y, out);
        }

        friend void deserialize(max_pool_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "max_pool_")
                throw serialization_error("Unexpected version found while deserializing dlib::max_pool_.");
            deserialize(item._nr, in);
            deserialize(item._nc, in);
            deserialize(item._stride_y, in);
            deserialize(item._stride_y, in);

            item.mp.setup(item._nr, item._nc, item._stride_y, item._stride_x);
        }

    private:

        long _nr;
        long _nc;
        int _stride_y;
        int _stride_x;

        tt::max_pool mp;
        resizable_tensor params;
    };

    template <typename SUBNET>
    using max_pool = add_layer<max_pool_, SUBNET>;

299
300
// ----------------------------------------------------------------------------------------

301
302
303
304
305
306
    enum batch_normalization_mode
    {
        BATCH_NORM_CONV = 0,
        BATCH_NORM_FC = 1
    };

307
308
309
    class bn_
    {
    public:
310
        bn_() : num_updates(0), running_stats_window_size(1000), mode(BATCH_NORM_FC)
311
312
        {}

313
314
315
316
317
        explicit bn_(batch_normalization_mode mode_) : num_updates(0), running_stats_window_size(1000), mode(mode_)
        {}

        batch_normalization_mode get_mode() const { return mode; }

318
319
320
        template <typename SUBNET>
        void setup (const SUBNET& sub)
        {
321
322
323
324
325
326
327
328
329
330
331
            if (mode == BATCH_NORM_FC)
            {
                gamma = alias_tensor(1,
                                sub.get_output().k(),
                                sub.get_output().nr(),
                                sub.get_output().nc());
            }
            else
            {
                gamma = alias_tensor(1, sub.get_output().k());
            }
Davis King's avatar
Davis King committed
332
333
334
335
336
337
            beta = gamma;

            params.set_size(gamma.size()+beta.size());

            gamma(params,0) = 1;
            beta(params,gamma.size()) = 0;
338

339
340
            running_means.copy_size(gamma(params,0));
            running_invstds.copy_size(gamma(params,0));
341
342
343
            running_means = 0;
            running_invstds = 1;
            num_updates = 0;
344
345
346
347
348
        }

        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
        {
Davis King's avatar
Davis King committed
349
350
            auto g = gamma(params,0);
            auto b = beta(params,gamma.size());
351
352
            if (sub.get_output().num_samples() > 1)
            {
353
                const double decay = 1.0 - num_updates/(num_updates+1.0);
354
355
                if (num_updates <running_stats_window_size)
                    ++num_updates;
356
357
358
359
                if (mode == BATCH_NORM_FC)
                    tt::batch_normalize(output, means, invstds, decay, running_means, running_invstds, sub.get_output(), g, b);
                else 
                    tt::batch_normalize_conv(output, means, invstds, decay, running_means, running_invstds, sub.get_output(), g, b);
360
361
362
            }
            else // we are running in testing mode so we just linearly scale the input tensor.
            {
363
364
365
366
                if (mode == BATCH_NORM_FC)
                    tt::batch_normalize_inference(output, sub.get_output(), g, b, running_means, running_invstds);
                else
                    tt::batch_normalize_conv_inference(output, sub.get_output(), g, b, running_means, running_invstds);
367
            }
368
369
370
371
372
        } 

        template <typename SUBNET>
        void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
        {
Davis King's avatar
Davis King committed
373
374
375
            auto g = gamma(params,0);
            auto g_grad = gamma(params_grad, 0);
            auto b_grad = beta(params_grad, gamma.size());
376
377
378
379
            if (mode == BATCH_NORM_FC)
                tt::batch_normalize_gradient(gradient_input, means, invstds, sub.get_output(), g, sub.get_gradient_input(), g_grad, b_grad );
            else
                tt::batch_normalize_conv_gradient(gradient_input, means, invstds, sub.get_output(), g, sub.get_gradient_input(), g_grad, b_grad );
380
381
382
383
384
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

Davis King's avatar
Davis King committed
385
386
387
388
389
390
391
392
        friend void serialize(const bn_& item, std::ostream& out)
        {
            serialize("bn_", out);
            serialize(item.params, out);
            serialize(item.gamma, out);
            serialize(item.beta, out);
            serialize(item.means, out);
            serialize(item.invstds, out);
393
394
395
396
            serialize(item.running_means, out);
            serialize(item.running_invstds, out);
            serialize(item.num_updates, out);
            serialize(item.running_stats_window_size, out);
397
            serialize((int)item.mode, out);
Davis King's avatar
Davis King committed
398
399
400
401
402
403
404
405
406
407
408
409
410
        }

        friend void deserialize(bn_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "bn_")
                throw serialization_error("Unexpected version found while deserializing dlib::bn_.");
            deserialize(item.params, in);
            deserialize(item.gamma, in);
            deserialize(item.beta, in);
            deserialize(item.means, in);
            deserialize(item.invstds, in);
411
412
413
414
            deserialize(item.running_means, in);
            deserialize(item.running_invstds, in);
            deserialize(item.num_updates, in);
            deserialize(item.running_stats_window_size, in);
415
416
417
            int mode;
            deserialize(mode, in);
            item.mode = (batch_normalization_mode)mode;
Davis King's avatar
Davis King committed
418
419
        }

420
421
422
    private:

        resizable_tensor params;
Davis King's avatar
Davis King committed
423
        alias_tensor gamma, beta;
424
425
426
427
        resizable_tensor means, running_means;
        resizable_tensor invstds, running_invstds;
        unsigned long num_updates;
        unsigned long running_stats_window_size;
428
        batch_normalization_mode mode;
429
430
431
432
433
    };

    template <typename SUBNET>
    using bn = add_layer<bn_, SUBNET>;

434
435
436
437
438
// ----------------------------------------------------------------------------------------

    class fc_
    {
    public:
Davis King's avatar
Davis King committed
439
        fc_() : num_outputs(1), num_inputs(0)
440
441
442
        {
        }

443
444
        explicit fc_(
            unsigned long num_outputs_
Davis King's avatar
Davis King committed
445
        ) : num_outputs(num_outputs_), num_inputs(0)
446
447
448
449
450
451
        {
        }

        unsigned long get_num_outputs (
        ) const { return num_outputs; }

Davis King's avatar
Davis King committed
452
453
        template <typename SUBNET>
        void setup (const SUBNET& sub)
454
455
456
457
        {
            num_inputs = sub.get_output().nr()*sub.get_output().nc()*sub.get_output().k();
            params.set_size(num_inputs, num_outputs);

458
            dlib::rand rnd("fc_"+cast_to_string(num_outputs));
459
460
461
            randomize_parameters(params, num_inputs+num_outputs, rnd);
        }

Davis King's avatar
Davis King committed
462
463
        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
464
        {
465
            output.set_size(sub.get_output().num_samples(), num_outputs);
466

467
            tt::gemm(0,output, 1,sub.get_output(),false, params,false);
468
469
        } 

Davis King's avatar
Davis King committed
470
        template <typename SUBNET>
471
        void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
472
473
        {
            // compute the gradient of the parameters.  
474
            tt::gemm(0,params_grad, 1,sub.get_output(),true, gradient_input,false);
475
476

            // compute the gradient for the data
477
            tt::gemm(1,sub.get_gradient_input(), 1,gradient_input,false, params,true);
478
479
480
481
482
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
        friend void serialize(const fc_& item, std::ostream& out)
        {
            serialize("fc_", out);
            serialize(item.num_outputs, out);
            serialize(item.num_inputs, out);
            serialize(item.params, out);
        }

        friend void deserialize(fc_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "fc_")
                throw serialization_error("Unexpected version found while deserializing dlib::fc_.");
            deserialize(item.num_outputs, in);
            deserialize(item.num_inputs, in);
            deserialize(item.params, in);
        }

502
503
504
505
506
507
508
509
    private:

        unsigned long num_outputs;
        unsigned long num_inputs;
        resizable_tensor params;
    };


Davis King's avatar
Davis King committed
510
511
    template <typename SUBNET>
    using fc = add_layer<fc_, SUBNET>;
512

Davis King's avatar
Davis King committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
// ----------------------------------------------------------------------------------------

    class dropout_
    {
    public:
        explicit dropout_(
            float drop_rate_ = 0.5
        ) :
            drop_rate(drop_rate_)
        {
        }

        // We have to add a copy constructor and assignment operator because the rnd object
        // is non-copyable.
        dropout_(
            const dropout_& item
        ) : drop_rate(item.drop_rate), mask(item.mask)
        {}

        dropout_& operator= (
            const dropout_& item
        )
        {
            if (this == &item)
                return *this;

            drop_rate = item.drop_rate;
            mask = item.mask;
            return *this;
        }

        float get_drop_rate (
        ) const { return drop_rate; }

        template <typename SUBNET>
        void setup (const SUBNET& /*sub*/)
        {
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            // create a random mask and use it to filter the data
            mask.copy_size(input);
            rnd.fill_uniform(mask);
            tt::threshold(mask, drop_rate);
            tt::multiply(output, input, mask);
        } 

        void backward_inplace(
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& /*params_grad*/
        )
        {
            tt::multiply(data_grad, mask, gradient_input);
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const dropout_& item, std::ostream& out)
        {
            serialize("dropout_", out);
            serialize(item.drop_rate, out);
            serialize(item.mask, out);
        }

        friend void deserialize(dropout_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "dropout_")
                throw serialization_error("Unexpected version found while deserializing dlib::dropout_.");
            deserialize(item.drop_rate, in);
            deserialize(item.mask, in);
        }

    private:
        float drop_rate;
        resizable_tensor mask;

        tt::tensor_rand rnd;
        resizable_tensor params; // unused
    };


    template <typename SUBNET>
    using dropout = add_layer<dropout_, SUBNET>;

Davis King's avatar
Davis King committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
// ----------------------------------------------------------------------------------------

    class affine_
    {
    public:
        affine_(
        ) 
        {
        }

        template <typename SUBNET>
        void setup (const SUBNET& sub)
        {
            gamma = alias_tensor(1,
                            sub.get_output().k(),
                            sub.get_output().nr(),
                            sub.get_output().nc());
            beta = gamma;

            params.set_size(gamma.size()+beta.size());

            gamma(params,0) = 1;
            beta(params,gamma.size()) = 0;
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            auto g = gamma(params,0);
            auto b = beta(params,gamma.size());
            tt::affine_transform(output, input, g, b);
        } 

        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& params_grad
        )
        {
            auto g = gamma(params,0);
            auto b = beta(params,gamma.size());
            auto g_grad = gamma(params_grad,0);
            auto b_grad = beta(params_grad,gamma.size());

            // We are computing the gradient of dot(gradient_input, computed_output*g + b)
            tt::multiply(data_grad, gradient_input, g);

            tt::multiply(g_grad, gradient_input, computed_output);
            tt::add_bias_gradient(b_grad, gradient_input);
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const affine_& item, std::ostream& out)
        {
            serialize("affine_", out);
            serialize(item.params, out);
            serialize(item.gamma, out);
            serialize(item.beta, out);
        }

        friend void deserialize(affine_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "affine_")
                throw serialization_error("Unexpected version found while deserializing dlib::affine_.");
            deserialize(item.params, in);
            deserialize(item.gamma, in);
            deserialize(item.beta, in);
        }

    private:
        resizable_tensor params; 
        alias_tensor gamma, beta;
    };

    template <typename SUBNET>
    using affine = add_layer<affine_, SUBNET>;

683
684
685
686
687
688
689
690
691
// ----------------------------------------------------------------------------------------

    class relu_
    {
    public:
        relu_() 
        {
        }

Davis King's avatar
Davis King committed
692
        template <typename SUBNET>
Davis King's avatar
Davis King committed
693
        void setup (const SUBNET& /*sub*/)
694
695
696
        {
        }

697
        void forward_inplace(const tensor& input, tensor& output)
698
        {
699
            tt::relu(output, input);
700
701
        } 

702
703
704
705
        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
706
            tensor& 
707
        )
708
        {
709
            tt::relu_gradient(data_grad, computed_output, gradient_input);
710
711
712
713
714
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

Davis King's avatar
Davis King committed
715
        friend void serialize(const relu_& , std::ostream& out)
716
        {
717
            serialize("relu_", out);
718
719
        }

Davis King's avatar
Davis King committed
720
        friend void deserialize(relu_& , std::istream& in)
721
        {
722
723
724
725
            std::string version;
            deserialize(version, in);
            if (version != "relu_")
                throw serialization_error("Unexpected version found while deserializing dlib::relu_.");
726
727
        }

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
    private:
        resizable_tensor params;
    };


    template <typename SUBNET>
    using relu = add_layer<relu_, SUBNET>;

// ----------------------------------------------------------------------------------------

    class sig_
    {
    public:
        sig_() 
        {
        }

        template <typename SUBNET>
Davis King's avatar
Davis King committed
746
        void setup (const SUBNET& /*sub*/)
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
        {
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            tt::sigmoid(output, input);
        } 

        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& 
        )
        {
            tt::sigmoid_gradient(data_grad, computed_output, gradient_input);
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const sig_& , std::ostream& out)
        {
            serialize("sig_", out);
        }

        friend void deserialize(sig_& , std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "sig_")
                throw serialization_error("Unexpected version found while deserializing dlib::sig_.");
        }
780
781

    private:
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
        resizable_tensor params;
    };


    template <typename SUBNET>
    using sig = add_layer<sig_, SUBNET>;

// ----------------------------------------------------------------------------------------

    class htan_
    {
    public:
        htan_() 
        {
        }

        template <typename SUBNET>
Davis King's avatar
Davis King committed
799
        void setup (const SUBNET& /*sub*/)
800
801
802
803
804
805
806
        {
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            tt::tanh(output, input);
        } 
807

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& 
        )
        {
            tt::tanh_gradient(data_grad, computed_output, gradient_input);
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const htan_& , std::ostream& out)
        {
            serialize("htan_", out);
        }

        friend void deserialize(htan_& , std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "htan_")
                throw serialization_error("Unexpected version found while deserializing dlib::htan_.");
        }

    private:
835
836
837
        resizable_tensor params;
    };

838

Davis King's avatar
Davis King committed
839
    template <typename SUBNET>
840
841
842
843
844
845
846
847
848
849
850
851
    using htan = add_layer<htan_, SUBNET>;

// ----------------------------------------------------------------------------------------

    class softmax_
    {
    public:
        softmax_() 
        {
        }

        template <typename SUBNET>
Davis King's avatar
Davis King committed
852
        void setup (const SUBNET& /*sub*/)
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
        {
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            tt::softmax(output, input);
        } 

        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& 
        )
        {
            tt::softmax_gradient(data_grad, computed_output, gradient_input);
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const softmax_& , std::ostream& out)
        {
            serialize("softmax_", out);
        }

        friend void deserialize(softmax_& , std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "softmax_")
                throw serialization_error("Unexpected version found while deserializing dlib::softmax_.");
        }

    private:
        resizable_tensor params;
    };

    template <typename SUBNET>
    using softmax = add_layer<softmax_, SUBNET>;
893
894
895
896
897

// ----------------------------------------------------------------------------------------

}

898
#endif // DLIB_DNn_LAYERS_H_
899
900