test_stable_diffusion_inpaint.py 52.6 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
18
import traceback
19
20
21
22
import unittest

import numpy as np
import torch
23
from huggingface_hub import hf_hub_download
24
25
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
26
27

from diffusers import (
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
28
    AsymmetricAutoencoderKL,
29
    AutoencoderKL,
30
    DDIMScheduler,
31
    DPMSolverMultistepScheduler,
32
    LMSDiscreteScheduler,
33
34
35
36
    PNDMScheduler,
    StableDiffusionInpaintPipeline,
    UNet2DConditionModel,
)
37
from diffusers.models.attention_processor import AttnProcessor
38
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
39
40
from diffusers.utils.testing_utils import (
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
41
42
43
44
    floats_tensor,
    load_image,
    load_numpy,
    nightly,
45
46
47
    require_torch_2,
    require_torch_gpu,
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
48
49
    slow,
    torch_device,
50
)
51

52
from ...models.test_models_unet_2d_condition import create_lora_layers
53
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
54
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
55

56

57
enable_full_determinism()
58
59


60
61
62
63
64
65
66
67
68
69
70
71
# Will be run via run_test_in_subprocess
def _test_inpaint_compile(in_queue, out_queue, timeout):
    error = None
    try:
        inputs = in_queue.get(timeout=timeout)
        torch_device = inputs.pop("torch_device")
        seed = inputs.pop("seed")
        inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
72
        pipe.unet.set_default_attn_processor()
73
74
75
76
77
78
79
80
81
82
83
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
84
        expected_slice = np.array([0.0689, 0.0699, 0.0790, 0.0536, 0.0470, 0.0488, 0.041, 0.0508, 0.04179])
85
86
87
88
89
90
91
92
93
        assert np.abs(expected_slice - image_slice).max() < 3e-3
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


94
95
96
class StableDiffusionInpaintPipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
97
    pipeline_class = StableDiffusionInpaintPipeline
98
99
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
100
101
    image_params = frozenset([])
    # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
102
    image_latents_params = frozenset([])
103

104
    def get_dummy_components(self):
105
        torch.manual_seed(0)
106
        unet = UNet2DConditionModel(
107
108
109
110
111
112
113
114
115
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
116
        scheduler = PNDMScheduler(skip_prk_steps=True)
117
        torch.manual_seed(0)
118
        vae = AutoencoderKL(
119
120
121
122
123
124
125
126
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
127
        text_encoder_config = CLIPTextConfig(
128
129
130
131
132
133
134
135
136
137
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
138
        text_encoder = CLIPTextModel(text_encoder_config)
139
140
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

141
142
143
144
145
146
147
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
148
            "feature_extractor": None,
149
150
151
        }
        return components

152
    def get_dummy_inputs(self, device, seed=0, img_res=64, output_pil=True):
153
        # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        if output_pil:
            # Get random floats in [0, 1] as image
            image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
            image = image.cpu().permute(0, 2, 3, 1)[0]
            mask_image = torch.ones_like(image)
            # Convert image and mask_image to [0, 255]
            image = 255 * image
            mask_image = 255 * mask_image
            # Convert to PIL image
            init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((img_res, img_res))
            mask_image = Image.fromarray(np.uint8(mask_image)).convert("RGB").resize((img_res, img_res))
        else:
            # Get random floats in [0, 1] as image with spatial size (img_res, img_res)
            image = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
            # Convert image to [-1, 1]
            init_image = 2.0 * image - 1.0
            mask_image = torch.ones((1, 1, img_res, img_res), device=device)

172
173
174
175
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
176

177
178
179
180
181
182
183
184
185
186
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
187

188
189
190
191
    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
192
193
194
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

195
196
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
197
198
        image_slice = image[0, -3:, -3:, -1]

199
        assert image.shape == (1, 64, 64, 3)
200
        expected_slice = np.array([0.4703, 0.5697, 0.3879, 0.5470, 0.6042, 0.4413, 0.5078, 0.4728, 0.4469])
201

202
203
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

204
205
    def test_stable_diffusion_inpaint_image_tensor(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
206
207
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
208
209
210
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

211
212
213
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        out_pil = output.images
214

215
216
217
218
219
        inputs = self.get_dummy_inputs(device)
        inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0)
        inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0)
        output = sd_pipe(**inputs)
        out_tensor = output.images
220

221
222
        assert out_pil.shape == (1, 64, 64, 3)
        assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2
223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    def test_stable_diffusion_inpaint_lora(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        # forward 1
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        # set lora layers
        lora_attn_procs = create_lora_layers(sd_pipe.unet)
        sd_pipe.unet.set_attn_processor(lora_attn_procs)
        sd_pipe = sd_pipe.to(torch_device)

        # forward 2
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.0})
        image = output.images
        image_slice_1 = image[0, -3:, -3:, -1]

        # forward 3
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.5})
        image = output.images
        image_slice_2 = image[0, -3:, -3:, -1]

        assert np.abs(image_slice - image_slice_1).max() < 1e-2
        assert np.abs(image_slice - image_slice_2).max() > 1e-2

258
259
260
    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

261
262
263
264
265
266
267
268
269
270
271
272
273
274
    def test_stable_diffusion_inpaint_strength_zero_test(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)

        # check that the pipeline raises value error when num_inference_steps is < 1
        inputs["strength"] = 0.01
        with self.assertRaises(ValueError):
            sd_pipe(**inputs).images

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    def test_stable_diffusion_inpaint_mask_latents(self):
        device = "cpu"
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        # normal mask + normal image
        ##  `image`: pil, `mask_image``: pil, `masked_image_latents``: None
        inputs = self.get_dummy_inputs(device)
        inputs["strength"] = 0.9
        out_0 = sd_pipe(**inputs).images

        # image latents + mask latents
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe.image_processor.preprocess(inputs["image"]).to(sd_pipe.device)
        mask = sd_pipe.mask_processor.preprocess(inputs["mask_image"]).to(sd_pipe.device)
        masked_image = image * (mask < 0.5)

        generator = torch.Generator(device=device).manual_seed(0)
        image_latents = (
            sd_pipe.vae.encode(image).latent_dist.sample(generator=generator) * sd_pipe.vae.config.scaling_factor
        )
        torch.randn((1, 4, 32, 32), generator=generator)
        mask_latents = (
            sd_pipe.vae.encode(masked_image).latent_dist.sample(generator=generator)
            * sd_pipe.vae.config.scaling_factor
        )
        inputs["image"] = image_latents
        inputs["masked_image_latents"] = mask_latents
        inputs["mask_image"] = mask
        inputs["strength"] = 0.9
        generator = torch.Generator(device=device).manual_seed(0)
        torch.randn((1, 4, 32, 32), generator=generator)
        inputs["generator"] = generator
        out_1 = sd_pipe(**inputs).images
        assert np.abs(out_0 - out_1).max() < 1e-2

312

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
class StableDiffusionSimpleInpaintPipelineFastTests(StableDiffusionInpaintPipelineFastTests):
    pipeline_class = StableDiffusionInpaintPipeline
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
    image_params = frozenset([])
    # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        scheduler = PNDMScheduler(skip_prk_steps=True)
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
380
        expected_slice = np.array([0.6584, 0.5424, 0.5649, 0.5449, 0.5897, 0.6111, 0.5404, 0.5463, 0.5214])
381
382
383
384
385
386
387
388

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @unittest.skip("skipped here because area stays unchanged due to mask")
    def test_stable_diffusion_inpaint_lora(self):
        ...


389
@slow
390
@require_torch_gpu
391
392
393
394
class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
    def setUp(self):
        super().setUp()

395
396
397
398
399
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

400
401
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
402
        init_image = load_image(
403
404
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
405
406
        )
        mask_image = load_image(
407
408
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
409
        )
410
411
412
413
414
415
416
417
418
419
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
420

421
422
423
424
    def test_stable_diffusion_inpaint_ddim(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
425
426
427
428
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

429
430
431
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
432

433
        assert image.shape == (1, 512, 512, 3)
434
435
        expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794])

436
        assert np.abs(expected_slice - image_slice).max() < 6e-4
437
438
439

    def test_stable_diffusion_inpaint_fp16(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
440
            "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
441
        )
442
        pipe.unet.set_default_attn_processor()
443
444
445
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
446

447
448
449
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
450

451
        assert image.shape == (1, 512, 512, 3)
452
        expected_slice = np.array([0.1509, 0.1245, 0.1672, 0.1655, 0.1519, 0.1226, 0.1462, 0.1567, 0.2451])
453
        assert np.abs(expected_slice - image_slice).max() < 5e-2
454

455
    def test_stable_diffusion_inpaint_pndm(self):
456
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
457
            "runwayml/stable-diffusion-inpainting", safety_checker=None
458
        )
459
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
460
461
462
463
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

464
465
466
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
467

468
        assert image.shape == (1, 512, 512, 3)
469
470
        expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])

471
        assert np.abs(expected_slice - image_slice).max() < 5e-3
472

473
474
475
    def test_stable_diffusion_inpaint_k_lms(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
476
        )
477
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
478
479
480
481
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

482
483
484
485
486
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
487
488
        expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633])

489
        assert np.abs(expected_slice - image_slice).max() < 6e-3
490

491
492
493
494
495
496
    def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
497
            "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
498
        )
499
500
501
502
503
504
505
506
507
508
509
510
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9

511
    @require_torch_2
512
    def test_inpaint_compile(self):
513
514
515
516
517
518
519
        seed = 0
        inputs = self.get_inputs(torch_device, seed=seed)
        # Can't pickle a Generator object
        del inputs["generator"]
        inputs["torch_device"] = torch_device
        inputs["seed"] = seed
        run_test_in_subprocess(test_case=self, target_func=_test_inpaint_compile, inputs=inputs)
520

521
    def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
Patrick von Platen's avatar
Patrick von Platen committed
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input image to a random size (one that would cause a tensor mismatch error)
        inputs["image"] = inputs["image"].resize((127, 127))
        inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
        inputs["height"] = 128
        inputs["width"] = 128
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, inputs["height"], inputs["width"], 3)
539

540
541
542
543
544
    def test_stable_diffusion_inpaint_strength_test(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
545
        pipe.unet.set_default_attn_processor()
546
547
548
549
550
551
552
553
554
555
556
557
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input strength
        inputs["strength"] = 0.75
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, 512, 512, 3)

        image_slice = image[0, 253:256, 253:256, -1].flatten()
558
559
        expected_slice = np.array([0.2728, 0.2803, 0.2665, 0.2511, 0.2774, 0.2586, 0.2391, 0.2392, 0.2582])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
560

561
562
    def test_stable_diffusion_simple_inpaint_ddim(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
563
        pipe.unet.set_default_attn_processor()
564
565
566
567
568
569
570
571
572
573
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images

        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
574
575
        expected_slice = np.array([0.3757, 0.3875, 0.4445, 0.4353, 0.3780, 0.4513, 0.3965, 0.3984, 0.4362])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
576

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
    def test_download_local(self):
        filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt")

        pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 1
        image_out = pipe(**inputs).images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-inpainting/blob/main/sd-v1-5-inpainting.ckpt"

        pipe = StableDiffusionInpaintPipeline.from_single_file(ckpt_path)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        image_ckpt = pipe(**inputs).images[0]

        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        image = pipe(**inputs).images[0]

        assert np.max(np.abs(image - image_ckpt)) < 1e-4

613

Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
@slow
@require_torch_gpu
class StableDiffusionInpaintPipelineAsymmetricAutoencoderKLSlowTests(unittest.TestCase):
    def setUp(self):
        super().setUp()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        init_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
        )
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_inpaint_ddim(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.vae = vae
652
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
653
654
655
656
657
658
659
660
661
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
662
        expected_slice = np.array([0.0522, 0.0604, 0.0596, 0.0449, 0.0493, 0.0427, 0.1186, 0.1289, 0.1442])
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
663

664
        assert np.abs(expected_slice - image_slice).max() < 1e-3
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
665
666
667
668
669
670
671
672

    def test_stable_diffusion_inpaint_fp16(self):
        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
        )
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
        )
673
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
        pipe.vae = vae
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.1343, 0.1406, 0.1440, 0.1504, 0.1729, 0.0989, 0.1807, 0.2822, 0.1179])

        assert np.abs(expected_slice - image_slice).max() < 5e-2

    def test_stable_diffusion_inpaint_pndm(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
693
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
694
695
696
697
698
699
700
701
702
703
704
        pipe.vae = vae
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
705
        expected_slice = np.array([0.0966, 0.1083, 0.1148, 0.1422, 0.1318, 0.1197, 0.3702, 0.3537, 0.3288])
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
706
707
708
709
710
711
712
713

        assert np.abs(expected_slice - image_slice).max() < 5e-3

    def test_stable_diffusion_inpaint_k_lms(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
714
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
715
716
717
718
719
720
721
722
723
724
        pipe.vae = vae
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
        assert image.shape == (1, 512, 512, 3)
725
        expected_slice = np.array([0.8931, 0.8683, 0.8965, 0.8501, 0.8592, 0.9118, 0.8734, 0.7463, 0.8990])
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
        assert np.abs(expected_slice - image_slice).max() < 6e-3

    def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
        )
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
        )
        pipe.vae = vae
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.45 GB is allocated
        assert mem_bytes < 2.45 * 10**9

    @require_torch_2
    def test_inpaint_compile(self):
        pass

    def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5",
        )
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.vae = vae
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input image to a random size (one that would cause a tensor mismatch error)
        inputs["image"] = inputs["image"].resize((127, 127))
        inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
        inputs["height"] = 128
        inputs["width"] = 128
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, inputs["height"], inputs["width"], 3)

    def test_stable_diffusion_inpaint_strength_test(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
784
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
        pipe.vae = vae
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input strength
        inputs["strength"] = 0.75
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, 512, 512, 3)

        image_slice = image[0, 253:256, 253:256, -1].flatten()
        expected_slice = np.array([0.2458, 0.2576, 0.3124, 0.2679, 0.2669, 0.2796, 0.2872, 0.2975, 0.2661])
        assert np.abs(expected_slice - image_slice).max() < 3e-3

    def test_stable_diffusion_simple_inpaint_ddim(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
        pipe.vae = vae
806
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
807
808
809
810
811
812
813
814
815
816
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images

        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
817
818
        expected_slice = np.array([0.3296, 0.4041, 0.4097, 0.4145, 0.4342, 0.4152, 0.4927, 0.4931, 0.4430])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

    def test_download_local(self):
        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
        )
        filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt")

        pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
        pipe.vae = vae
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 1
        image_out = pipe(**inputs).images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        pass


841
842
843
844
845
846
847
@nightly
@require_torch_gpu
class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()
848

849
850
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
851
        init_image = load_image(
852
853
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
854
855
        )
        mask_image = load_image(
856
857
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
858
        )
859
860
861
862
863
864
865
866
867
868
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
869

870
871
872
873
    def test_inpaint_ddim(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
874

875
876
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
877

878
879
880
881
882
883
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
884

885
886
887
888
889
890
891
892
    def test_inpaint_pndm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
893

894
895
896
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy"
897
        )
898
899
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
900

901
902
903
904
905
    def test_inpaint_lms(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
906

907
908
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
909

910
911
912
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy"
913
        )
914
915
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
916

917
918
919
920
921
    def test_inpaint_dpm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
922

923
924
925
        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]
926

927
928
929
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy"
930
        )
931
932
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
933

Patrick von Platen's avatar
Patrick von Platen committed
934

935
936
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase):
    def test_pil_inputs(self):
937
938
        height, width = 32, 32
        im = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
939
        im = Image.fromarray(im)
940
        mask = np.random.randint(0, 255, (height, width), dtype=np.uint8) > 127.5
941
942
        mask = Image.fromarray((mask * 255).astype(np.uint8))

943
        t_mask, t_masked, t_image = prepare_mask_and_masked_image(im, mask, height, width, return_image=True)
944
945
946

        self.assertTrue(isinstance(t_mask, torch.Tensor))
        self.assertTrue(isinstance(t_masked, torch.Tensor))
947
        self.assertTrue(isinstance(t_image, torch.Tensor))
948
949
950

        self.assertEqual(t_mask.ndim, 4)
        self.assertEqual(t_masked.ndim, 4)
951
        self.assertEqual(t_image.ndim, 4)
952

953
954
        self.assertEqual(t_mask.shape, (1, 1, height, width))
        self.assertEqual(t_masked.shape, (1, 3, height, width))
955
        self.assertEqual(t_image.shape, (1, 3, height, width))
956
957
958

        self.assertTrue(t_mask.dtype == torch.float32)
        self.assertTrue(t_masked.dtype == torch.float32)
959
        self.assertTrue(t_image.dtype == torch.float32)
960
961
962
963
964

        self.assertTrue(t_mask.min() >= 0.0)
        self.assertTrue(t_mask.max() <= 1.0)
        self.assertTrue(t_masked.min() >= -1.0)
        self.assertTrue(t_masked.min() <= 1.0)
965
966
        self.assertTrue(t_image.min() >= -1.0)
        self.assertTrue(t_image.min() >= -1.0)
967
968
969
970

        self.assertTrue(t_mask.sum() > 0.0)

    def test_np_inputs(self):
971
972
973
        height, width = 32, 32

        im_np = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
974
        im_pil = Image.fromarray(im_np)
Patrick von Platen's avatar
Patrick von Platen committed
975
976
977
978
979
980
981
982
983
984
985
986
        mask_np = (
            np.random.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=np.uint8,
            )
            > 127.5
        )
987
988
        mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8))

989
990
991
992
993
994
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
        )
        t_mask_pil, t_masked_pil, t_image_pil = prepare_mask_and_masked_image(
            im_pil, mask_pil, height, width, return_image=True
        )
995
996
997

        self.assertTrue((t_mask_np == t_mask_pil).all())
        self.assertTrue((t_masked_np == t_masked_pil).all())
998
        self.assertTrue((t_image_np == t_image_pil).all())
999
1000

    def test_torch_3D_2D_inputs(self):
1001
1002
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
        im_tensor = torch.randint(
            0,
            255,
            (
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1025
1026
1027
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

1028
1029
1030
1031
1032
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1033
        )
1034
1035
1036

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1037
        self.assertTrue((t_image_tensor == t_image_np).all())
1038
1039

    def test_torch_3D_3D_inputs(self):
1040
1041
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
        im_tensor = torch.randint(
            0,
            255,
            (
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1065
1066
1067
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

1068
1069
1070
1071
1072
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1073
        )
1074
1075
1076

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1077
        self.assertTrue((t_image_tensor == t_image_np).all())
1078
1079

    def test_torch_4D_2D_inputs(self):
1080
1081
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1105
1106
1107
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

1108
1109
1110
1111
1112
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1113
        )
1114
1115
1116

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1117
        self.assertTrue((t_image_tensor == t_image_np).all())
1118
1119

    def test_torch_4D_3D_inputs(self):
1120
1121
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1146
1147
1148
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

1149
1150
1151
1152
1153
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1154
        )
1155
1156
1157

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1158
        self.assertTrue((t_image_tensor == t_image_np).all())
1159
1160

    def test_torch_4D_4D_inputs(self):
1161
1162
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1188
1189
1190
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0][0]

1191
1192
1193
1194
1195
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1196
        )
1197
1198
1199

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1200
        self.assertTrue((t_image_tensor == t_image_np).all())
1201
1202

    def test_torch_batch_4D_3D(self):
1203
1204
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
        im_tensor = torch.randint(
            0,
            255,
            (
                2,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    2,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1229
1230
1231
1232

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy() for mask in mask_tensor]

1233
1234
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1235
        )
1236
        nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)]
1237
1238
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])
1239
        t_image_np = torch.cat([n[2] for n in nps])
1240
1241
1242

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1243
        self.assertTrue((t_image_tensor == t_image_np).all())
1244
1245

    def test_torch_batch_4D_4D(self):
1246
1247
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
        im_tensor = torch.randint(
            0,
            255,
            (
                2,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    2,
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1273
1274
1275
1276

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy()[0] for mask in mask_tensor]

1277
1278
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1279
        )
1280
        nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)]
1281
1282
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])
1283
        t_image_np = torch.cat([n[2] for n in nps])
1284
1285
1286

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1287
        self.assertTrue((t_image_tensor == t_image_np).all())
1288
1289

    def test_shape_mismatch(self):
1290
1291
        height, width = 32, 32

1292
1293
        # test height and width
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1294
1295
1296
1297
1298
1299
1300
1301
1302
            prepare_mask_and_masked_image(
                torch.randn(
                    3,
                    height,
                    width,
                ),
                torch.randn(64, 64),
                height,
                width,
1303
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1304
            )
1305
1306
        # test batch dim
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
            prepare_mask_and_masked_image(
                torch.randn(
                    2,
                    3,
                    height,
                    width,
                ),
                torch.randn(4, 64, 64),
                height,
                width,
1317
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1318
            )
1319
1320
        # test batch dim
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
            prepare_mask_and_masked_image(
                torch.randn(
                    2,
                    3,
                    height,
                    width,
                ),
                torch.randn(4, 1, 64, 64),
                height,
                width,
1331
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1332
            )
1333
1334

    def test_type_mismatch(self):
1335
1336
        height, width = 32, 32

1337
1338
        # test tensors-only
        with self.assertRaises(TypeError):
Patrick von Platen's avatar
Patrick von Platen committed
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.rand(
                    3,
                    height,
                    width,
                ).numpy(),
                height,
                width,
1352
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1353
            )
1354
1355
        # test tensors-only
        with self.assertRaises(TypeError):
Patrick von Platen's avatar
Patrick von Platen committed
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ).numpy(),
                torch.rand(
                    3,
                    height,
                    width,
                ),
                height,
                width,
1369
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1370
            )
1371
1372

    def test_channels_first(self):
1373
1374
        height, width = 32, 32

1375
1376
        # test channels first for 3D tensors
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1377
1378
1379
1380
1381
1382
1383
1384
1385
            prepare_mask_and_masked_image(
                torch.rand(height, width, 3),
                torch.rand(
                    3,
                    height,
                    width,
                ),
                height,
                width,
1386
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1387
            )
1388
1389

    def test_tensor_range(self):
1390
1391
        height, width = 32, 32

1392
1393
        # test im <= 1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
            prepare_mask_and_masked_image(
                torch.ones(
                    3,
                    height,
                    width,
                )
                * 2,
                torch.rand(
                    height,
                    width,
                ),
                height,
                width,
1407
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1408
            )
1409
1410
        # test im >= -1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
            prepare_mask_and_masked_image(
                torch.ones(
                    3,
                    height,
                    width,
                )
                * (-2),
                torch.rand(
                    height,
                    width,
                ),
                height,
                width,
1424
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1425
            )
1426
1427
        # test mask <= 1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.ones(
                    height,
                    width,
                )
                * 2,
                height,
                width,
1441
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1442
            )
1443
1444
        # test mask >= 0
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.ones(
                    height,
                    width,
                )
                * -1,
                height,
                width,
1458
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1459
            )