"vscode:/vscode.git/clone" did not exist on "4a77f4536cdf07883a2d0c6edbe19193bc685dba"
test_stable_diffusion_inpaint.py 22.1 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
23
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
24
25
26

from diffusers import (
    AutoencoderKL,
27
    DPMSolverMultistepScheduler,
28
    LMSDiscreteScheduler,
29
30
31
32
    PNDMScheduler,
    StableDiffusionInpaintPipeline,
    UNet2DConditionModel,
)
33
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
34
from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device
35
from diffusers.utils.testing_utils import require_torch_gpu
36

37
from ...pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
38
39
from ...test_pipelines_common import PipelineTesterMixin

40
41
42
43

torch.backends.cuda.matmul.allow_tf32 = False


44
class StableDiffusionInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
45
    pipeline_class = StableDiffusionInpaintPipeline
46
47
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
48

49
    def get_dummy_components(self):
50
        torch.manual_seed(0)
51
        unet = UNet2DConditionModel(
52
53
54
55
56
57
58
59
60
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
61
        scheduler = PNDMScheduler(skip_prk_steps=True)
62
        torch.manual_seed(0)
63
        vae = AutoencoderKL(
64
65
66
67
68
69
70
71
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
72
        text_encoder_config = CLIPTextConfig(
73
74
75
76
77
78
79
80
81
82
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
83
        text_encoder = CLIPTextModel(text_encoder_config)
84
85
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

86
87
88
89
90
91
92
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
93
            "feature_extractor": None,
94
95
96
97
98
99
100
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
Patrick von Platen's avatar
Patrick von Platen committed
101
102
        init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64))
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
117

118
119
120
121
    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
122
123
124
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

125
126
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
127
128
        image_slice = image[0, -3:, -3:, -1]

129
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
130
        expected_slice = np.array([0.4723, 0.5731, 0.3939, 0.5441, 0.5922, 0.4392, 0.5059, 0.4651, 0.4474])
131

132
133
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

134
135
    def test_stable_diffusion_inpaint_image_tensor(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
136
137
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
138
139
140
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

141
142
143
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        out_pil = output.images
144

145
146
147
148
149
        inputs = self.get_dummy_inputs(device)
        inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0)
        inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0)
        output = sd_pipe(**inputs)
        out_tensor = output.images
150

151
152
        assert out_pil.shape == (1, 64, 64, 3)
        assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2
153

154
155

@slow
156
@require_torch_gpu
157
158
159
160
class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
    def setUp(self):
        super().setUp()

161
162
163
164
165
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

166
167
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
168
        init_image = load_image(
169
170
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
171
172
        )
        mask_image = load_image(
173
174
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
175
        )
176
177
178
179
180
181
182
183
184
185
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
186

187
188
189
190
    def test_stable_diffusion_inpaint_ddim(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
191
192
193
194
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

195
196
197
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
198

199
        assert image.shape == (1, 512, 512, 3)
200
201
        expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794])

202
203
204
205
        assert np.abs(expected_slice - image_slice).max() < 1e-4

    def test_stable_diffusion_inpaint_fp16(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
206
            "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
207
        )
208
209
210
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
211

212
213
214
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
215

216
        assert image.shape == (1, 512, 512, 3)
217
        expected_slice = np.array([0.1350, 0.1123, 0.1350, 0.1641, 0.1328, 0.1230, 0.1289, 0.1531, 0.1687])
218
219

        assert np.abs(expected_slice - image_slice).max() < 5e-2
220

221
    def test_stable_diffusion_inpaint_pndm(self):
222
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
223
            "runwayml/stable-diffusion-inpainting", safety_checker=None
224
        )
225
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
226
227
228
229
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

230
231
232
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
233

234
        assert image.shape == (1, 512, 512, 3)
235
236
        expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])

237
        assert np.abs(expected_slice - image_slice).max() < 1e-4
238

239
240
241
    def test_stable_diffusion_inpaint_k_lms(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
242
        )
243
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
244
245
246
247
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

248
249
250
251
252
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
253
254
        expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633])

255
        assert np.abs(expected_slice - image_slice).max() < 1e-4
256

257
258
259
260
261
262
    def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
263
            "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
264
        )
265
266
267
268
269
270
271
272
273
274
275
276
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9

277

278
279
280
281
282
283
284
@nightly
@require_torch_gpu
class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()
285

286
287
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
288
        init_image = load_image(
289
290
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
291
292
        )
        mask_image = load_image(
293
294
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
295
        )
296
297
298
299
300
301
302
303
304
305
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
306

307
308
309
310
    def test_inpaint_ddim(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
311

312
313
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
314

315
316
317
318
319
320
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
321

322
323
324
325
326
327
328
329
    def test_inpaint_pndm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
330

331
332
333
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy"
334
        )
335
336
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
337

338
339
340
341
342
    def test_inpaint_lms(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
343

344
345
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
346

347
348
349
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy"
350
        )
351
352
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
353

354
355
356
357
358
    def test_inpaint_dpm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
359

360
361
362
        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]
363

364
365
366
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy"
367
        )
368
369
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
370

Patrick von Platen's avatar
Patrick von Platen committed
371

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase):
    def test_pil_inputs(self):
        im = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
        im = Image.fromarray(im)
        mask = np.random.randint(0, 255, (32, 32), dtype=np.uint8) > 127.5
        mask = Image.fromarray((mask * 255).astype(np.uint8))

        t_mask, t_masked = prepare_mask_and_masked_image(im, mask)

        self.assertTrue(isinstance(t_mask, torch.Tensor))
        self.assertTrue(isinstance(t_masked, torch.Tensor))

        self.assertEqual(t_mask.ndim, 4)
        self.assertEqual(t_masked.ndim, 4)

        self.assertEqual(t_mask.shape, (1, 1, 32, 32))
        self.assertEqual(t_masked.shape, (1, 3, 32, 32))

        self.assertTrue(t_mask.dtype == torch.float32)
        self.assertTrue(t_masked.dtype == torch.float32)

        self.assertTrue(t_mask.min() >= 0.0)
        self.assertTrue(t_mask.max() <= 1.0)
        self.assertTrue(t_masked.min() >= -1.0)
        self.assertTrue(t_masked.min() <= 1.0)

        self.assertTrue(t_mask.sum() > 0.0)

    def test_np_inputs(self):
        im_np = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
        im_pil = Image.fromarray(im_np)
        mask_np = np.random.randint(0, 255, (32, 32), dtype=np.uint8) > 127.5
        mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8))

        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
        t_mask_pil, t_masked_pil = prepare_mask_and_masked_image(im_pil, mask_pil)

        self.assertTrue((t_mask_np == t_mask_pil).all())
        self.assertTrue((t_masked_np == t_masked_pil).all())

    def test_torch_3D_2D_inputs(self):
        im_tensor = torch.randint(0, 255, (3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (32, 32), dtype=torch.uint8) > 127.5
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_3D_3D_inputs(self):
        im_tensor = torch.randint(0, 255, (3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8) > 127.5
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_4D_2D_inputs(self):
        im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (32, 32), dtype=torch.uint8) > 127.5
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_4D_3D_inputs(self):
        im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8) > 127.5
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_4D_4D_inputs(self):
        im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (1, 1, 32, 32), dtype=torch.uint8) > 127.5
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0][0]

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_batch_4D_3D(self):
        im_tensor = torch.randint(0, 255, (2, 3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (2, 32, 32), dtype=torch.uint8) > 127.5

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy() for mask in mask_tensor]

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        nps = [prepare_mask_and_masked_image(i, m) for i, m in zip(im_nps, mask_nps)]
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_batch_4D_4D(self):
        im_tensor = torch.randint(0, 255, (2, 3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (2, 1, 32, 32), dtype=torch.uint8) > 127.5

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy()[0] for mask in mask_tensor]

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        nps = [prepare_mask_and_masked_image(i, m) for i, m in zip(im_nps, mask_nps)]
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_shape_mismatch(self):
        # test height and width
        with self.assertRaises(AssertionError):
            prepare_mask_and_masked_image(torch.randn(3, 32, 32), torch.randn(64, 64))
        # test batch dim
        with self.assertRaises(AssertionError):
            prepare_mask_and_masked_image(torch.randn(2, 3, 32, 32), torch.randn(4, 64, 64))
        # test batch dim
        with self.assertRaises(AssertionError):
            prepare_mask_and_masked_image(torch.randn(2, 3, 32, 32), torch.randn(4, 1, 64, 64))

    def test_type_mismatch(self):
        # test tensors-only
        with self.assertRaises(TypeError):
            prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.rand(3, 32, 32).numpy())
        # test tensors-only
        with self.assertRaises(TypeError):
            prepare_mask_and_masked_image(torch.rand(3, 32, 32).numpy(), torch.rand(3, 32, 32))

    def test_channels_first(self):
        # test channels first for 3D tensors
        with self.assertRaises(AssertionError):
            prepare_mask_and_masked_image(torch.rand(32, 32, 3), torch.rand(3, 32, 32))

    def test_tensor_range(self):
        # test im <= 1
        with self.assertRaises(ValueError):
            prepare_mask_and_masked_image(torch.ones(3, 32, 32) * 2, torch.rand(32, 32))
        # test im >= -1
        with self.assertRaises(ValueError):
            prepare_mask_and_masked_image(torch.ones(3, 32, 32) * (-2), torch.rand(32, 32))
        # test mask <= 1
        with self.assertRaises(ValueError):
            prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.ones(32, 32) * 2)
        # test mask >= 0
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
538
            prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.ones(32, 32) * -1)