test_stable_diffusion_inpaint.py 25.5 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
from packaging import version
23
24
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
25
26
27

from diffusers import (
    AutoencoderKL,
28
    DPMSolverMultistepScheduler,
29
    LMSDiscreteScheduler,
30
31
32
33
    PNDMScheduler,
    StableDiffusionInpaintPipeline,
    UNet2DConditionModel,
)
34
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
35
from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device
36
from diffusers.utils.testing_utils import require_torch_gpu
37

38
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
39
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
40

41
42
43
44

torch.backends.cuda.matmul.allow_tf32 = False


45
class StableDiffusionInpaintPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
46
    pipeline_class = StableDiffusionInpaintPipeline
47
48
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
49
50
51
    image_params = frozenset(
        []
    )  # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
52

53
    def get_dummy_components(self):
54
        torch.manual_seed(0)
55
        unet = UNet2DConditionModel(
56
57
58
59
60
61
62
63
64
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
65
        scheduler = PNDMScheduler(skip_prk_steps=True)
66
        torch.manual_seed(0)
67
        vae = AutoencoderKL(
68
69
70
71
72
73
74
75
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
76
        text_encoder_config = CLIPTextConfig(
77
78
79
80
81
82
83
84
85
86
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
87
        text_encoder = CLIPTextModel(text_encoder_config)
88
89
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

90
91
92
93
94
95
96
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
97
            "feature_extractor": None,
98
99
100
101
102
103
104
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
Patrick von Platen's avatar
Patrick von Platen committed
105
106
        init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64))
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
121

122
123
124
125
    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
126
127
128
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

129
130
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
131
132
        image_slice = image[0, -3:, -3:, -1]

133
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
134
        expected_slice = np.array([0.4723, 0.5731, 0.3939, 0.5441, 0.5922, 0.4392, 0.5059, 0.4651, 0.4474])
135

136
137
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

138
139
    def test_stable_diffusion_inpaint_image_tensor(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
140
141
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
142
143
144
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

145
146
147
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        out_pil = output.images
148

149
150
151
152
153
        inputs = self.get_dummy_inputs(device)
        inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0)
        inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0)
        output = sd_pipe(**inputs)
        out_tensor = output.images
154

155
156
        assert out_pil.shape == (1, 64, 64, 3)
        assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2
157

158
159

@slow
160
@require_torch_gpu
161
162
163
164
class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
    def setUp(self):
        super().setUp()

165
166
167
168
169
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

170
171
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
172
        init_image = load_image(
173
174
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
175
176
        )
        mask_image = load_image(
177
178
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
179
        )
180
181
182
183
184
185
186
187
188
189
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
190

191
192
193
194
    def test_stable_diffusion_inpaint_ddim(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
195
196
197
198
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

199
200
201
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
202

203
        assert image.shape == (1, 512, 512, 3)
204
205
        expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794])

206
207
208
209
        assert np.abs(expected_slice - image_slice).max() < 1e-4

    def test_stable_diffusion_inpaint_fp16(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
210
            "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
211
        )
212
213
214
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
215

216
217
218
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
219

220
        assert image.shape == (1, 512, 512, 3)
221
        expected_slice = np.array([0.1350, 0.1123, 0.1350, 0.1641, 0.1328, 0.1230, 0.1289, 0.1531, 0.1687])
222
223

        assert np.abs(expected_slice - image_slice).max() < 5e-2
224

225
    def test_stable_diffusion_inpaint_pndm(self):
226
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
227
            "runwayml/stable-diffusion-inpainting", safety_checker=None
228
        )
229
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
230
231
232
233
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

234
235
236
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
237

238
        assert image.shape == (1, 512, 512, 3)
239
240
        expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])

241
        assert np.abs(expected_slice - image_slice).max() < 1e-4
242

243
244
245
    def test_stable_diffusion_inpaint_k_lms(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
246
        )
247
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
248
249
250
251
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

252
253
254
255
256
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
257
258
        expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633])

259
        assert np.abs(expected_slice - image_slice).max() < 1e-4
260

261
262
263
264
265
266
    def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
267
            "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
268
        )
269
270
271
272
273
274
275
276
277
278
279
280
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    def test_inpaint_compile(self):
        if version.parse(torch.__version__) < version.parse("2.0"):
            print(f"Test `test_stable_diffusion_ddim` is skipped because {torch.__version__} is < 2.0")
            return

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])

        assert np.abs(expected_slice - image_slice).max() < 1e-4
        assert np.abs(expected_slice - image_slice).max() < 1e-3

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
            pipe = StableDiffusionInpaintPipeline.from_pretrained(
                "runwayml/stable-diffusion-inpainting", safety_checker=None
            )
            pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
            pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            pipe.enable_attention_slicing()

            inputs = self.get_inputs(torch_device)
            # change input image to a random size (one that would cause a tensor mismatch error)
            inputs['image'] = inputs['image'].resize((127,127))
            inputs['mask_image'] = inputs['mask_image'].resize((127,127))
            inputs['height'] = 128
            inputs['width'] = 128
            image = pipe(**inputs).images
            # verify that the returned image has the same height and width as the input height and width
            assert image.shape == (1, inputs['height'], inputs['width'], 3)

325

326
327
328
329
330
331
332
@nightly
@require_torch_gpu
class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()
333

334
335
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
336
        init_image = load_image(
337
338
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
339
340
        )
        mask_image = load_image(
341
342
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
343
        )
344
345
346
347
348
349
350
351
352
353
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
354

355
356
357
358
    def test_inpaint_ddim(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
359

360
361
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
362

363
364
365
366
367
368
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
369

370
371
372
373
374
375
376
377
    def test_inpaint_pndm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
378

379
380
381
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy"
382
        )
383
384
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
385

386
387
388
389
390
    def test_inpaint_lms(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
391

392
393
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
394

395
396
397
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy"
398
        )
399
400
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
401

402
403
404
405
406
    def test_inpaint_dpm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
407

408
409
410
        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]
411

412
413
414
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy"
415
        )
416
417
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
418

Patrick von Platen's avatar
Patrick von Platen committed
419

420
421
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase):
    def test_pil_inputs(self):
422
423
        height, width = 32, 32
        im = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
424
        im = Image.fromarray(im)
425
        mask = np.random.randint(0, 255, (height, width), dtype=np.uint8) > 127.5
426
427
        mask = Image.fromarray((mask * 255).astype(np.uint8))

428
        t_mask, t_masked = prepare_mask_and_masked_image(im, mask, height, width)
429
430
431
432
433
434
435

        self.assertTrue(isinstance(t_mask, torch.Tensor))
        self.assertTrue(isinstance(t_masked, torch.Tensor))

        self.assertEqual(t_mask.ndim, 4)
        self.assertEqual(t_masked.ndim, 4)

436
437
        self.assertEqual(t_mask.shape, (1, 1, height, width))
        self.assertEqual(t_masked.shape, (1, 3, height, width))
438
439
440
441
442
443
444
445
446
447
448
449

        self.assertTrue(t_mask.dtype == torch.float32)
        self.assertTrue(t_masked.dtype == torch.float32)

        self.assertTrue(t_mask.min() >= 0.0)
        self.assertTrue(t_mask.max() <= 1.0)
        self.assertTrue(t_masked.min() >= -1.0)
        self.assertTrue(t_masked.min() <= 1.0)

        self.assertTrue(t_mask.sum() > 0.0)

    def test_np_inputs(self):
450
451
452
        height, width = 32, 32

        im_np = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
453
        im_pil = Image.fromarray(im_np)
454
        mask_np = np.random.randint(0, 255, (height, width,), dtype=np.uint8) > 127.5
455
456
        mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8))

457
458
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np, height, width)
        t_mask_pil, t_masked_pil = prepare_mask_and_masked_image(im_pil, mask_pil, height, width)
459
460
461
462
463

        self.assertTrue((t_mask_np == t_mask_pil).all())
        self.assertTrue((t_masked_np == t_masked_pil).all())

    def test_torch_3D_2D_inputs(self):
464
465
466
467
        height, width = 32, 32

        im_tensor = torch.randint(0, 255, (3, height, width,), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (height, width,), dtype=torch.uint8) > 127.5
468
469
470
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

471
472
        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor, height, width)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np, height, width)
473
474
475
476
477

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_3D_3D_inputs(self):
478
479
480
481
        height, width = 32, 32

        im_tensor = torch.randint(0, 255, (3, height, width,), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (1, height, width,), dtype=torch.uint8) > 127.5
482
483
484
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

485
486
        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor, height, width)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np, height, width)
487
488
489
490
491

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_4D_2D_inputs(self):
492
493
494
495
        height, width = 32, 32

        im_tensor = torch.randint(0, 255, (1, 3, height, width,), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (height, width,), dtype=torch.uint8) > 127.5
496
497
498
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

499
500
        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor, height, width)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np, height, width)
501
502
503
504
505

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_4D_3D_inputs(self):
506
507
508
509
        height, width = 32, 32

        im_tensor = torch.randint(0, 255, (1, 3, height, width,), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (1, height, width,), dtype=torch.uint8) > 127.5
510
511
512
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

513
514
        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor, height, width)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np, height, width)
515
516
517
518
519

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_4D_4D_inputs(self):
520
521
522
523
        height, width = 32, 32

        im_tensor = torch.randint(0, 255, (1, 3, height, width,), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (1, 1, height, width,), dtype=torch.uint8) > 127.5
524
525
526
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0][0]

527
528
        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor, height, width)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np, height, width)
529
530
531
532
533

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_batch_4D_3D(self):
534
535
536
537
        height, width = 32, 32

        im_tensor = torch.randint(0, 255, (2, 3, height, width,), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (2, height, width,), dtype=torch.uint8) > 127.5
538
539
540
541

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy() for mask in mask_tensor]

542
543
        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor, height, width)
        nps = [prepare_mask_and_masked_image(i, m, height, width) for i, m in zip(im_nps, mask_nps)]
544
545
546
547
548
549
550
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_batch_4D_4D(self):
551
552
553
554
        height, width = 32, 32

        im_tensor = torch.randint(0, 255, (2, 3, height, width,), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (2, 1, height, width,), dtype=torch.uint8) > 127.5
555
556
557
558

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy()[0] for mask in mask_tensor]

559
560
        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor, height, width)
        nps = [prepare_mask_and_masked_image(i, m, height, width) for i, m in zip(im_nps, mask_nps)]
561
562
563
564
565
566
567
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_shape_mismatch(self):
568
569
        height, width = 32, 32

570
571
        # test height and width
        with self.assertRaises(AssertionError):
572
            prepare_mask_and_masked_image(torch.randn(3, height, width,), torch.randn(64, 64), height, width)
573
574
        # test batch dim
        with self.assertRaises(AssertionError):
575
            prepare_mask_and_masked_image(torch.randn(2, 3, height, width,), torch.randn(4, 64, 64), height, width)
576
577
        # test batch dim
        with self.assertRaises(AssertionError):
578
            prepare_mask_and_masked_image(torch.randn(2, 3, height, width,), torch.randn(4, 1, 64, 64), height, width)
579
580

    def test_type_mismatch(self):
581
582
        height, width = 32, 32

583
584
        # test tensors-only
        with self.assertRaises(TypeError):
585
            prepare_mask_and_masked_image(torch.rand(3, height, width,), torch.rand(3, height, width,).numpy(), height, width)
586
587
        # test tensors-only
        with self.assertRaises(TypeError):
588
            prepare_mask_and_masked_image(torch.rand(3, height, width,).numpy(), torch.rand(3, height, width,), height, width)
589
590

    def test_channels_first(self):
591
592
        height, width = 32, 32

593
594
        # test channels first for 3D tensors
        with self.assertRaises(AssertionError):
595
            prepare_mask_and_masked_image(torch.rand(height, width, 3), torch.rand(3, height, width,), height, width)
596
597

    def test_tensor_range(self):
598
599
        height, width = 32, 32

600
601
        # test im <= 1
        with self.assertRaises(ValueError):
602
            prepare_mask_and_masked_image(torch.ones(3, height, width,) * 2, torch.rand(height, width,), height, width)
603
604
        # test im >= -1
        with self.assertRaises(ValueError):
605
            prepare_mask_and_masked_image(torch.ones(3, height, width,) * (-2), torch.rand(height, width,), height, width)
606
607
        # test mask <= 1
        with self.assertRaises(ValueError):
608
            prepare_mask_and_masked_image(torch.rand(3, height, width,), torch.ones(height, width,) * 2, height, width)
609
610
        # test mask >= 0
        with self.assertRaises(ValueError):
611
            prepare_mask_and_masked_image(torch.rand(3, height, width,), torch.ones(height, width,) * -1, height, width)