test_stable_diffusion_inpaint.py 40.6 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
18
import traceback
19
20
21
22
import unittest

import numpy as np
import torch
23
from huggingface_hub import hf_hub_download
24
25
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
26
27
28

from diffusers import (
    AutoencoderKL,
29
    DDIMScheduler,
30
    DPMSolverMultistepScheduler,
31
    LMSDiscreteScheduler,
32
33
34
35
    PNDMScheduler,
    StableDiffusionInpaintPipeline,
    UNet2DConditionModel,
)
36
from diffusers.models.attention_processor import AttnProcessor
37
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
38
from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device
39
40
41
42
43
44
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    require_torch_2,
    require_torch_gpu,
    run_test_in_subprocess,
)
45

46
from ...models.test_models_unet_2d_condition import create_lora_layers
47
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
48
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
49

50

51
enable_full_determinism()
52
53


54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Will be run via run_test_in_subprocess
def _test_inpaint_compile(in_queue, out_queue, timeout):
    error = None
    try:
        inputs = in_queue.get(timeout=timeout)
        torch_device = inputs.pop("torch_device")
        seed = inputs.pop("seed")
        inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])

        assert np.abs(expected_slice - image_slice).max() < 3e-3
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


88
89
90
class StableDiffusionInpaintPipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
91
    pipeline_class = StableDiffusionInpaintPipeline
92
93
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
94
95
    image_params = frozenset([])
    # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
96
    image_latents_params = frozenset([])
97

98
    def get_dummy_components(self):
99
        torch.manual_seed(0)
100
        unet = UNet2DConditionModel(
101
102
103
104
105
106
107
108
109
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
110
        scheduler = PNDMScheduler(skip_prk_steps=True)
111
        torch.manual_seed(0)
112
        vae = AutoencoderKL(
113
114
115
116
117
118
119
120
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
121
        text_encoder_config = CLIPTextConfig(
122
123
124
125
126
127
128
129
130
131
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
132
        text_encoder = CLIPTextModel(text_encoder_config)
133
134
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

135
136
137
138
139
140
141
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
142
            "feature_extractor": None,
143
144
145
146
147
148
149
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
Patrick von Platen's avatar
Patrick von Platen committed
150
151
        init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64))
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
166

167
168
169
170
    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
171
172
173
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

174
175
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
176
177
        image_slice = image[0, -3:, -3:, -1]

178
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
179
        expected_slice = np.array([0.4723, 0.5731, 0.3939, 0.5441, 0.5922, 0.4392, 0.5059, 0.4651, 0.4474])
180

181
182
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

183
184
    def test_stable_diffusion_inpaint_image_tensor(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
185
186
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
187
188
189
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

190
191
192
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        out_pil = output.images
193

194
195
196
197
198
        inputs = self.get_dummy_inputs(device)
        inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0)
        inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0)
        output = sd_pipe(**inputs)
        out_tensor = output.images
199

200
201
        assert out_pil.shape == (1, 64, 64, 3)
        assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2
202

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    def test_stable_diffusion_inpaint_lora(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        # forward 1
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        # set lora layers
        lora_attn_procs = create_lora_layers(sd_pipe.unet)
        sd_pipe.unet.set_attn_processor(lora_attn_procs)
        sd_pipe = sd_pipe.to(torch_device)

        # forward 2
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.0})
        image = output.images
        image_slice_1 = image[0, -3:, -3:, -1]

        # forward 3
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.5})
        image = output.images
        image_slice_2 = image[0, -3:, -3:, -1]

        assert np.abs(image_slice - image_slice_1).max() < 1e-2
        assert np.abs(image_slice - image_slice_2).max() > 1e-2

237
238
239
    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

240
241
242
243
244
245
246
247
248
249
250
251
252
253
    def test_stable_diffusion_inpaint_strength_zero_test(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)

        # check that the pipeline raises value error when num_inference_steps is < 1
        inputs["strength"] = 0.01
        with self.assertRaises(ValueError):
            sd_pipe(**inputs).images

254

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
class StableDiffusionSimpleInpaintPipelineFastTests(StableDiffusionInpaintPipelineFastTests):
    pipeline_class = StableDiffusionInpaintPipeline
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
    image_params = frozenset([])
    # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        scheduler = PNDMScheduler(skip_prk_steps=True)
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.4925, 0.4967, 0.4100, 0.5234, 0.5322, 0.4532, 0.5805, 0.5877, 0.4151])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @unittest.skip("skipped here because area stays unchanged due to mask")
    def test_stable_diffusion_inpaint_lora(self):
        ...


331
@slow
332
@require_torch_gpu
333
334
335
336
class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
    def setUp(self):
        super().setUp()

337
338
339
340
341
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

342
343
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
344
        init_image = load_image(
345
346
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
347
348
        )
        mask_image = load_image(
349
350
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
351
        )
352
353
354
355
356
357
358
359
360
361
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
362

363
364
365
366
    def test_stable_diffusion_inpaint_ddim(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
367
368
369
370
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

371
372
373
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
374

375
        assert image.shape == (1, 512, 512, 3)
376
377
        expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794])

378
        assert np.abs(expected_slice - image_slice).max() < 6e-4
379
380
381

    def test_stable_diffusion_inpaint_fp16(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
382
            "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
383
        )
384
385
386
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
387

388
389
390
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
391

392
        assert image.shape == (1, 512, 512, 3)
393
        expected_slice = np.array([0.1350, 0.1123, 0.1350, 0.1641, 0.1328, 0.1230, 0.1289, 0.1531, 0.1687])
394
395

        assert np.abs(expected_slice - image_slice).max() < 5e-2
396

397
    def test_stable_diffusion_inpaint_pndm(self):
398
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
399
            "runwayml/stable-diffusion-inpainting", safety_checker=None
400
        )
401
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
402
403
404
405
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

406
407
408
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
409

410
        assert image.shape == (1, 512, 512, 3)
411
412
        expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])

413
        assert np.abs(expected_slice - image_slice).max() < 5e-3
414

415
416
417
    def test_stable_diffusion_inpaint_k_lms(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
418
        )
419
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
420
421
422
423
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

424
425
426
427
428
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
429
430
        expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633])

431
        assert np.abs(expected_slice - image_slice).max() < 6e-3
432

433
434
435
436
437
438
    def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
439
            "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
440
        )
441
442
443
444
445
446
447
448
449
450
451
452
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9

453
    @require_torch_2
454
    def test_inpaint_compile(self):
455
456
457
458
459
460
461
        seed = 0
        inputs = self.get_inputs(torch_device, seed=seed)
        # Can't pickle a Generator object
        del inputs["generator"]
        inputs["torch_device"] = torch_device
        inputs["seed"] = seed
        run_test_in_subprocess(test_case=self, target_func=_test_inpaint_compile, inputs=inputs)
462

463
    def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
Patrick von Platen's avatar
Patrick von Platen committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input image to a random size (one that would cause a tensor mismatch error)
        inputs["image"] = inputs["image"].resize((127, 127))
        inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
        inputs["height"] = 128
        inputs["width"] = 128
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, inputs["height"], inputs["width"], 3)
481

482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    def test_stable_diffusion_inpaint_strength_test(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input strength
        inputs["strength"] = 0.75
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, 512, 512, 3)

        image_slice = image[0, 253:256, 253:256, -1].flatten()
        expected_slice = np.array([0.0021, 0.2350, 0.3712, 0.0575, 0.2485, 0.3451, 0.1857, 0.3156, 0.3943])
        assert np.abs(expected_slice - image_slice).max() < 3e-3

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
    def test_stable_diffusion_simple_inpaint_ddim(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images

        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.5157, 0.6858, 0.6873, 0.4619, 0.6416, 0.6898, 0.3702, 0.5960, 0.6935])

        assert np.abs(expected_slice - image_slice).max() < 6e-4

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
    def test_download_local(self):
        filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt")

        pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 1
        image_out = pipe(**inputs).images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-inpainting/blob/main/sd-v1-5-inpainting.ckpt"

        pipe = StableDiffusionInpaintPipeline.from_single_file(ckpt_path)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        image_ckpt = pipe(**inputs).images[0]

        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        image = pipe(**inputs).images[0]

        assert np.max(np.abs(image - image_ckpt)) < 1e-4

554

555
556
557
558
559
560
561
@nightly
@require_torch_gpu
class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()
562

563
564
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
565
        init_image = load_image(
566
567
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
568
569
        )
        mask_image = load_image(
570
571
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
572
        )
573
574
575
576
577
578
579
580
581
582
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
583

584
585
586
587
    def test_inpaint_ddim(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
588

589
590
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
591

592
593
594
595
596
597
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
598

599
600
601
602
603
604
605
606
    def test_inpaint_pndm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
607

608
609
610
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy"
611
        )
612
613
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
614

615
616
617
618
619
    def test_inpaint_lms(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
620

621
622
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
623

624
625
626
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy"
627
        )
628
629
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
630

631
632
633
634
635
    def test_inpaint_dpm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
636

637
638
639
        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]
640

641
642
643
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy"
644
        )
645
646
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
647

Patrick von Platen's avatar
Patrick von Platen committed
648

649
650
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase):
    def test_pil_inputs(self):
651
652
        height, width = 32, 32
        im = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
653
        im = Image.fromarray(im)
654
        mask = np.random.randint(0, 255, (height, width), dtype=np.uint8) > 127.5
655
656
        mask = Image.fromarray((mask * 255).astype(np.uint8))

657
        t_mask, t_masked, t_image = prepare_mask_and_masked_image(im, mask, height, width, return_image=True)
658
659
660

        self.assertTrue(isinstance(t_mask, torch.Tensor))
        self.assertTrue(isinstance(t_masked, torch.Tensor))
661
        self.assertTrue(isinstance(t_image, torch.Tensor))
662
663
664

        self.assertEqual(t_mask.ndim, 4)
        self.assertEqual(t_masked.ndim, 4)
665
        self.assertEqual(t_image.ndim, 4)
666

667
668
        self.assertEqual(t_mask.shape, (1, 1, height, width))
        self.assertEqual(t_masked.shape, (1, 3, height, width))
669
        self.assertEqual(t_image.shape, (1, 3, height, width))
670
671
672

        self.assertTrue(t_mask.dtype == torch.float32)
        self.assertTrue(t_masked.dtype == torch.float32)
673
        self.assertTrue(t_image.dtype == torch.float32)
674
675
676
677
678

        self.assertTrue(t_mask.min() >= 0.0)
        self.assertTrue(t_mask.max() <= 1.0)
        self.assertTrue(t_masked.min() >= -1.0)
        self.assertTrue(t_masked.min() <= 1.0)
679
680
        self.assertTrue(t_image.min() >= -1.0)
        self.assertTrue(t_image.min() >= -1.0)
681
682
683
684

        self.assertTrue(t_mask.sum() > 0.0)

    def test_np_inputs(self):
685
686
687
        height, width = 32, 32

        im_np = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
688
        im_pil = Image.fromarray(im_np)
Patrick von Platen's avatar
Patrick von Platen committed
689
690
691
692
693
694
695
696
697
698
699
700
        mask_np = (
            np.random.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=np.uint8,
            )
            > 127.5
        )
701
702
        mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8))

703
704
705
706
707
708
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
        )
        t_mask_pil, t_masked_pil, t_image_pil = prepare_mask_and_masked_image(
            im_pil, mask_pil, height, width, return_image=True
        )
709
710
711

        self.assertTrue((t_mask_np == t_mask_pil).all())
        self.assertTrue((t_masked_np == t_masked_pil).all())
712
        self.assertTrue((t_image_np == t_image_pil).all())
713
714

    def test_torch_3D_2D_inputs(self):
715
716
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
        im_tensor = torch.randint(
            0,
            255,
            (
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
739
740
741
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

742
743
744
745
746
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
747
        )
748
749
750

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
751
        self.assertTrue((t_image_tensor == t_image_np).all())
752
753

    def test_torch_3D_3D_inputs(self):
754
755
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
        im_tensor = torch.randint(
            0,
            255,
            (
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
779
780
781
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

782
783
784
785
786
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
787
        )
788
789
790

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
791
        self.assertTrue((t_image_tensor == t_image_np).all())
792
793

    def test_torch_4D_2D_inputs(self):
794
795
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
819
820
821
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

822
823
824
825
826
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
827
        )
828
829
830

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
831
        self.assertTrue((t_image_tensor == t_image_np).all())
832
833

    def test_torch_4D_3D_inputs(self):
834
835
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
860
861
862
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

863
864
865
866
867
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
868
        )
869
870
871

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
872
        self.assertTrue((t_image_tensor == t_image_np).all())
873
874

    def test_torch_4D_4D_inputs(self):
875
876
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
902
903
904
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0][0]

905
906
907
908
909
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
910
        )
911
912
913

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
914
        self.assertTrue((t_image_tensor == t_image_np).all())
915
916

    def test_torch_batch_4D_3D(self):
917
918
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
        im_tensor = torch.randint(
            0,
            255,
            (
                2,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    2,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
943
944
945
946

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy() for mask in mask_tensor]

947
948
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
949
        )
950
        nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)]
951
952
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])
953
        t_image_np = torch.cat([n[2] for n in nps])
954
955
956

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
957
        self.assertTrue((t_image_tensor == t_image_np).all())
958
959

    def test_torch_batch_4D_4D(self):
960
961
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
        im_tensor = torch.randint(
            0,
            255,
            (
                2,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    2,
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
987
988
989
990

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy()[0] for mask in mask_tensor]

991
992
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
993
        )
994
        nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)]
995
996
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])
997
        t_image_np = torch.cat([n[2] for n in nps])
998
999
1000

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1001
        self.assertTrue((t_image_tensor == t_image_np).all())
1002
1003

    def test_shape_mismatch(self):
1004
1005
        height, width = 32, 32

1006
1007
        # test height and width
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1008
1009
1010
1011
1012
1013
1014
1015
1016
            prepare_mask_and_masked_image(
                torch.randn(
                    3,
                    height,
                    width,
                ),
                torch.randn(64, 64),
                height,
                width,
1017
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1018
            )
1019
1020
        # test batch dim
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
            prepare_mask_and_masked_image(
                torch.randn(
                    2,
                    3,
                    height,
                    width,
                ),
                torch.randn(4, 64, 64),
                height,
                width,
1031
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1032
            )
1033
1034
        # test batch dim
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
            prepare_mask_and_masked_image(
                torch.randn(
                    2,
                    3,
                    height,
                    width,
                ),
                torch.randn(4, 1, 64, 64),
                height,
                width,
1045
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1046
            )
1047
1048

    def test_type_mismatch(self):
1049
1050
        height, width = 32, 32

1051
1052
        # test tensors-only
        with self.assertRaises(TypeError):
Patrick von Platen's avatar
Patrick von Platen committed
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.rand(
                    3,
                    height,
                    width,
                ).numpy(),
                height,
                width,
1066
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1067
            )
1068
1069
        # test tensors-only
        with self.assertRaises(TypeError):
Patrick von Platen's avatar
Patrick von Platen committed
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ).numpy(),
                torch.rand(
                    3,
                    height,
                    width,
                ),
                height,
                width,
1083
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1084
            )
1085
1086

    def test_channels_first(self):
1087
1088
        height, width = 32, 32

1089
1090
        # test channels first for 3D tensors
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
            prepare_mask_and_masked_image(
                torch.rand(height, width, 3),
                torch.rand(
                    3,
                    height,
                    width,
                ),
                height,
                width,
1100
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1101
            )
1102
1103

    def test_tensor_range(self):
1104
1105
        height, width = 32, 32

1106
1107
        # test im <= 1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
            prepare_mask_and_masked_image(
                torch.ones(
                    3,
                    height,
                    width,
                )
                * 2,
                torch.rand(
                    height,
                    width,
                ),
                height,
                width,
1121
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1122
            )
1123
1124
        # test im >= -1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
            prepare_mask_and_masked_image(
                torch.ones(
                    3,
                    height,
                    width,
                )
                * (-2),
                torch.rand(
                    height,
                    width,
                ),
                height,
                width,
1138
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1139
            )
1140
1141
        # test mask <= 1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.ones(
                    height,
                    width,
                )
                * 2,
                height,
                width,
1155
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1156
            )
1157
1158
        # test mask >= 0
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.ones(
                    height,
                    width,
                )
                * -1,
                height,
                width,
1172
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1173
            )