test_stable_diffusion.py 25.3 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
22
23
24
25

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
26
    DPMSolverMultistepScheduler,
27
28
29
30
31
32
33
34
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
    logging,
)
35
36
from diffusers.utils.testing_utils import (
    CaptureLogger,
Arsalan's avatar
Arsalan committed
37
    backend_empty_cache,
38
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
39
40
    load_numpy,
    nightly,
41
    numpy_cosine_similarity_distance,
Arsalan's avatar
Arsalan committed
42
    require_torch_accelerator,
43
    require_torch_gpu,
Arsalan's avatar
Arsalan committed
44
    skip_mps,
Dhruv Nair's avatar
Dhruv Nair committed
45
46
    slow,
    torch_device,
47
)
48

49
50
51
52
53
54
from ..pipeline_params import (
    TEXT_TO_IMAGE_BATCH_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
    TEXT_TO_IMAGE_IMAGE_PARAMS,
    TEXT_TO_IMAGE_PARAMS,
)
55
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
56
57


58
enable_full_determinism()
59
60


61
62
63
class StableDiffusion2PipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
64
    pipeline_class = StableDiffusionPipeline
65
66
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
67
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
68
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
69
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS
70

71
    def get_dummy_components(self):
72
        torch.manual_seed(0)
73
        unet = UNet2DConditionModel(
74
75
76
77
78
79
80
81
82
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
            # SD2-specific config below
Will Berman's avatar
Will Berman committed
83
            attention_head_dim=(2, 4),
84
85
            use_linear_projection=True,
        )
86
87
88
89
90
91
92
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
93
        torch.manual_seed(0)
94
        vae = AutoencoderKL(
95
96
97
98
99
100
101
102
103
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=128,
        )
        torch.manual_seed(0)
104
        text_encoder_config = CLIPTextConfig(
105
106
107
108
109
110
111
112
113
114
115
116
117
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=512,
        )
118
        text_encoder = CLIPTextModel(text_encoder_config)
119
120
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

121
122
123
124
125
126
127
128
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
129
            "image_encoder": None,
130
131
132
133
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
Arsalan's avatar
Arsalan committed
134
135
136
        generator_device = "cpu" if not device.startswith("cuda") else "cuda"
        if not str(device).startswith("mps"):
            generator = torch.Generator(device=generator_device).manual_seed(seed)
137
        else:
Arsalan's avatar
Arsalan committed
138
139
            generator = torch.manual_seed(seed)

140
141
142
143
144
145
146
147
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
148
149
150

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
151
152
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
153
154
155
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

156
157
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
158
159
160
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
161
        expected_slice = np.array([0.5753, 0.6113, 0.5005, 0.5036, 0.5464, 0.4725, 0.4982, 0.4865, 0.4861])
162
163
164
165
166

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
167
168
169
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
170
171
172
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

173
174
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
175
176
177
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
178
        expected_slice = np.array([0.5121, 0.5714, 0.4827, 0.5057, 0.5646, 0.4766, 0.5189, 0.4895, 0.4990])
179

180
181
182
183
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
184
185
186
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
187
188
189
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

190
191
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
192
193
194
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
195
        expected_slice = np.array([0.4865, 0.5439, 0.4840, 0.4995, 0.5543, 0.4846, 0.5199, 0.4942, 0.5061])
196

197
198
199
200
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
201
202
203
        components = self.get_dummy_components()
        components["scheduler"] = EulerAncestralDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
204
205
206
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

207
208
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
209
210
211
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
212
        expected_slice = np.array([0.4864, 0.5440, 0.4842, 0.4994, 0.5543, 0.4846, 0.5196, 0.4942, 0.5063])
213

214
215
216
217
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
218
219
220
        components = self.get_dummy_components()
        components["scheduler"] = EulerDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
221
222
223
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

224
225
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
226
227
228
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
229
        expected_slice = np.array([0.4865, 0.5439, 0.4840, 0.4995, 0.5543, 0.4846, 0.5199, 0.4942, 0.5061])
230

231
232
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    def test_stable_diffusion_unflawed(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        components["scheduler"] = DDIMScheduler.from_config(
            components["scheduler"].config, timestep_spacing="trailing"
        )
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["guidance_rescale"] = 0.7
        inputs["num_inference_steps"] = 10
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.4736, 0.5405, 0.4705, 0.4955, 0.5675, 0.4812, 0.5310, 0.4967, 0.5064])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

254
    def test_stable_diffusion_long_prompt(self):
255
256
257
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
258
259
260
261
262
263
264
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
265
        logger.setLevel(logging.WARNING)
266
267
268

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
269
            text_embeddings_3, negeative_text_embeddings_3 = sd_pipe.encode_prompt(
270
271
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
272
273
            if negeative_text_embeddings_3 is not None:
                text_embeddings_3 = torch.cat([negeative_text_embeddings_3, text_embeddings_3])
274
275
276

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
277
            text_embeddings, negative_embeddings = sd_pipe.encode_prompt(
278
279
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
280
281
            if negative_embeddings is not None:
                text_embeddings = torch.cat([negative_embeddings, text_embeddings])
282
283
284

        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
285
            text_embeddings_2, negative_text_embeddings_2 = sd_pipe.encode_prompt(
286
287
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
288
289
            if negative_text_embeddings_2 is not None:
                text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2])
290
291
292
293
294
295
296
297
298

        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77

        assert cap_logger.out == cap_logger_2.out
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25
        assert cap_logger_3.out == ""

299
300
301
302
303
304
    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

305
306

@slow
Arsalan's avatar
Arsalan committed
307
308
@require_torch_accelerator
@skip_mps
309
class StableDiffusion2PipelineSlowTests(unittest.TestCase):
310
311
312
    def tearDown(self):
        super().tearDown()
        gc.collect()
313
        backend_empty_cache(torch_device)
314

315
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
Arsalan's avatar
Arsalan committed
316
317
318
319
320
321
        _generator_device = "cpu" if not generator_device.startswith("cuda") else "cuda"
        if not str(device).startswith("mps"):
            generator = torch.Generator(device=_generator_device).manual_seed(seed)
        else:
            generator = torch.manual_seed(seed)

322
323
324
325
326
327
328
329
330
331
332
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
333

334
335
336
337
    def test_stable_diffusion_default_ddim(self):
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
338

339
340
341
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
342
343

        assert image.shape == (1, 512, 512, 3)
344
        expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506])
345
        assert np.abs(image_slice - expected_slice).max() < 7e-3
346

347
348
349
350
351
    def test_stable_diffusion_pndm(self):
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
352

353
354
355
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
356
357

        assert image.shape == (1, 512, 512, 3)
358
        expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506])
359
        assert np.abs(image_slice - expected_slice).max() < 7e-3
360
361

    def test_stable_diffusion_k_lms(self):
362
363
364
365
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
366

367
368
369
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
370
371

        assert image.shape == (1, 512, 512, 3)
372
        expected_slice = np.array([0.10440, 0.13115, 0.11100, 0.10141, 0.11440, 0.07215, 0.11332, 0.09693, 0.10006])
373
        assert np.abs(image_slice - expected_slice).max() < 3e-3
374

Arsalan's avatar
Arsalan committed
375
    @require_torch_gpu
376
    def test_stable_diffusion_attention_slicing(self):
377
        torch.cuda.reset_peak_memory_stats()
378
        pipe = StableDiffusionPipeline.from_pretrained(
379
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
380
        )
381
        pipe.unet.set_default_attn_processor()
382
        pipe = pipe.to(torch_device)
383
384
        pipe.set_progress_bar_config(disable=None)

385
        # enable attention slicing
386
        pipe.enable_attention_slicing()
387
388
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_sliced = pipe(**inputs).images
389
390
391

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
392
393
        # make sure that less than 3.3 GB is allocated
        assert mem_bytes < 3.3 * 10**9
394

395
        # disable slicing
396
        pipe.disable_attention_slicing()
397
        pipe.unet.set_default_attn_processor()
398
399
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
400

401
        # make sure that more than 3.3 GB is allocated
402
        mem_bytes = torch.cuda.max_memory_allocated()
403
        assert mem_bytes > 3.3 * 10**9
404
405
        max_diff = numpy_cosine_similarity_distance(image.flatten(), image_sliced.flatten())
        assert max_diff < 5e-3
406
407
408
409

    def test_stable_diffusion_text2img_intermediate_state(self):
        number_of_steps = 0

410
411
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
412
413
            nonlocal number_of_steps
            number_of_steps += 1
414
            if step == 1:
415
416
417
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
418
419
420
421
422
                expected_slice = np.array(
                    [-0.3862, -0.4507, -1.1729, 0.0686, -1.1045, 0.7124, -1.8301, 0.1903, 1.2773]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
423
            elif step == 2:
424
425
426
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
427
428
429
430
431
                expected_slice = np.array(
                    [0.2720, -0.1863, -0.7383, -0.5029, -0.7534, 0.3970, -0.7646, 0.4468, 1.2686]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
432

433
        callback_fn.has_been_called = False
434
435

        pipe = StableDiffusionPipeline.from_pretrained(
436
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
437
438
439
440
441
        )
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

442
443
444
445
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == inputs["num_inference_steps"]
446

Arsalan's avatar
Arsalan committed
447
    @require_torch_gpu
448
449
450
451
452
    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

453
        pipe = StableDiffusionPipeline.from_pretrained(
454
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
455
456
457
458
459
        )
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()
460

461
462
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
463
464
465
466

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9
467

Arsalan's avatar
Arsalan committed
468
    @require_torch_gpu
469
470
471
472
473
474
475
476
477
478
479
480
481
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-base",
            torch_dtype=torch.float16,
        )
482
        pipe.unet.set_default_attn_processor()
483
484
485
486
487
488
489
490
491
492
493
494
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        outputs = pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-base",
            torch_dtype=torch.float16,
        )
495
        pipe.unet.set_default_attn_processor()
496
497
498
499
500
501
502

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
503
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
504
505
506
        outputs_offloaded = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

507
508
509
510
        images = outputs.images
        images_offloaded = outputs_offloaded.images
        max_diff = numpy_cosine_similarity_distance(images.flatten(), images_offloaded.flatten())
        assert max_diff < 1e-3
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        assert mem_bytes_offloaded < mem_bytes
        assert mem_bytes_offloaded < 3 * 10**9
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
            assert module.device == torch.device("cpu")

        # With attention slicing
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_attention_slicing()
        _ = pipe(**inputs)
        mem_bytes_slicing = torch.cuda.max_memory_allocated()
        assert mem_bytes_slicing < mem_bytes_offloaded

526
527

@nightly
Arsalan's avatar
Arsalan committed
528
529
@require_torch_accelerator
@skip_mps
530
531
532
533
class StableDiffusion2PipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
534
        backend_empty_cache(torch_device)
535

536
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
Arsalan's avatar
Arsalan committed
537
538
539
540
541
542
        _generator_device = "cpu" if not generator_device.startswith("cuda") else "cuda"
        if not str(device).startswith("mps"):
            generator = torch.Generator(device=_generator_device).manual_seed(seed)
        else:
            generator = torch.manual_seed(seed)

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_2_0_default_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_0_base_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_2_1_default_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_euler(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_euler.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
630
631
632
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(
            sd_pipe.scheduler.config, final_sigmas_type="sigma_min"
        )
633
634
635
636
637
638
639
640
641
642
643
644
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_dpm_multi.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3