"test/vscode:/vscode.git/clone" did not exist on "f73c3ea2ea2a18518b9b7e73fa00687a943df9ec"
test_stable_diffusion.py 24.4 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
22
23
24
25

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
26
    DPMSolverMultistepScheduler,
27
28
29
30
31
32
33
34
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
    logging,
)
35
36
37
from diffusers.utils.testing_utils import (
    CaptureLogger,
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
38
39
    load_numpy,
    nightly,
40
41
    numpy_cosine_similarity_distance,
    require_torch_gpu,
Dhruv Nair's avatar
Dhruv Nair committed
42
43
    slow,
    torch_device,
44
)
45

46
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
47
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
48
49


50
enable_full_determinism()
51
52


53
54
55
class StableDiffusion2PipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
56
    pipeline_class = StableDiffusionPipeline
57
58
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
59
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
60
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
61

62
    def get_dummy_components(self):
63
        torch.manual_seed(0)
64
        unet = UNet2DConditionModel(
65
66
67
68
69
70
71
72
73
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
            # SD2-specific config below
Will Berman's avatar
Will Berman committed
74
            attention_head_dim=(2, 4),
75
76
            use_linear_projection=True,
        )
77
78
79
80
81
82
83
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
84
        torch.manual_seed(0)
85
        vae = AutoencoderKL(
86
87
88
89
90
91
92
93
94
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=128,
        )
        torch.manual_seed(0)
95
        text_encoder_config = CLIPTextConfig(
96
97
98
99
100
101
102
103
104
105
106
107
108
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=512,
        )
109
        text_encoder = CLIPTextModel(text_encoder_config)
110
111
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
136
137
138

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
139
140
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
141
142
143
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

144
145
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
146
147
148
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
149
        expected_slice = np.array([0.5753, 0.6113, 0.5005, 0.5036, 0.5464, 0.4725, 0.4982, 0.4865, 0.4861])
150
151
152
153
154

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
155
156
157
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
158
159
160
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

161
162
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
163
164
165
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
166
        expected_slice = np.array([0.5121, 0.5714, 0.4827, 0.5057, 0.5646, 0.4766, 0.5189, 0.4895, 0.4990])
167

168
169
170
171
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
172
173
174
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
175
176
177
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

178
179
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
180
181
182
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
183
        expected_slice = np.array([0.4865, 0.5439, 0.4840, 0.4995, 0.5543, 0.4846, 0.5199, 0.4942, 0.5061])
184

185
186
187
188
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
189
190
191
        components = self.get_dummy_components()
        components["scheduler"] = EulerAncestralDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
192
193
194
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

195
196
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
197
198
199
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
200
        expected_slice = np.array([0.4864, 0.5440, 0.4842, 0.4994, 0.5543, 0.4846, 0.5196, 0.4942, 0.5063])
201

202
203
204
205
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
206
207
208
        components = self.get_dummy_components()
        components["scheduler"] = EulerDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
209
210
211
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

212
213
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
214
215
216
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
217
        expected_slice = np.array([0.4865, 0.5439, 0.4840, 0.4995, 0.5543, 0.4846, 0.5199, 0.4942, 0.5061])
218

219
220
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    def test_stable_diffusion_unflawed(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        components["scheduler"] = DDIMScheduler.from_config(
            components["scheduler"].config, timestep_spacing="trailing"
        )
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["guidance_rescale"] = 0.7
        inputs["num_inference_steps"] = 10
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.4736, 0.5405, 0.4705, 0.4955, 0.5675, 0.4812, 0.5310, 0.4967, 0.5064])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

242
    def test_stable_diffusion_long_prompt(self):
243
244
245
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
246
247
248
249
250
251
252
253
254
255
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
256
            text_embeddings_3, negeative_text_embeddings_3 = sd_pipe.encode_prompt(
257
258
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
259
260
            if negeative_text_embeddings_3 is not None:
                text_embeddings_3 = torch.cat([negeative_text_embeddings_3, text_embeddings_3])
261
262
263

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
264
            text_embeddings, negative_embeddings = sd_pipe.encode_prompt(
265
266
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
267
268
            if negative_embeddings is not None:
                text_embeddings = torch.cat([negative_embeddings, text_embeddings])
269
270
271

        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
272
            text_embeddings_2, negative_text_embeddings_2 = sd_pipe.encode_prompt(
273
274
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
275
276
            if negative_text_embeddings_2 is not None:
                text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2])
277
278
279
280
281
282
283
284
285

        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77

        assert cap_logger.out == cap_logger_2.out
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25
        assert cap_logger_3.out == ""

286
287
288
289
290
291
    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

292
293
294

@slow
@require_torch_gpu
295
class StableDiffusion2PipelineSlowTests(unittest.TestCase):
296
297
298
299
300
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

301
302
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
303
304
305
306
307
308
309
310
311
312
313
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
314

315
316
317
318
    def test_stable_diffusion_default_ddim(self):
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
319

320
321
322
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
323
324

        assert image.shape == (1, 512, 512, 3)
325
        expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506])
326
        assert np.abs(image_slice - expected_slice).max() < 7e-3
327

328
329
330
331
332
    def test_stable_diffusion_pndm(self):
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
333

334
335
336
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
337
338

        assert image.shape == (1, 512, 512, 3)
339
        expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506])
340
        assert np.abs(image_slice - expected_slice).max() < 7e-3
341
342

    def test_stable_diffusion_k_lms(self):
343
344
345
346
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
347

348
349
350
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
351
352

        assert image.shape == (1, 512, 512, 3)
353
        expected_slice = np.array([0.10440, 0.13115, 0.11100, 0.10141, 0.11440, 0.07215, 0.11332, 0.09693, 0.10006])
354
        assert np.abs(image_slice - expected_slice).max() < 3e-3
355

356
    def test_stable_diffusion_attention_slicing(self):
357
        torch.cuda.reset_peak_memory_stats()
358
        pipe = StableDiffusionPipeline.from_pretrained(
359
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
360
        )
361
        pipe.unet.set_default_attn_processor()
362
        pipe = pipe.to(torch_device)
363
364
        pipe.set_progress_bar_config(disable=None)

365
        # enable attention slicing
366
        pipe.enable_attention_slicing()
367
368
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_sliced = pipe(**inputs).images
369
370
371

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
372
373
        # make sure that less than 3.3 GB is allocated
        assert mem_bytes < 3.3 * 10**9
374

375
        # disable slicing
376
        pipe.disable_attention_slicing()
377
        pipe.unet.set_default_attn_processor()
378
379
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
380

381
        # make sure that more than 3.3 GB is allocated
382
        mem_bytes = torch.cuda.max_memory_allocated()
383
384
        assert mem_bytes > 3.3 * 10**9
        assert np.abs(image_sliced - image).max() < 1e-3
385
386
387
388

    def test_stable_diffusion_text2img_intermediate_state(self):
        number_of_steps = 0

389
390
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
391
392
            nonlocal number_of_steps
            number_of_steps += 1
393
            if step == 1:
394
395
396
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
397
398
399
400
401
                expected_slice = np.array(
                    [-0.3862, -0.4507, -1.1729, 0.0686, -1.1045, 0.7124, -1.8301, 0.1903, 1.2773]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
402
            elif step == 2:
403
404
405
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
406
407
408
409
410
                expected_slice = np.array(
                    [0.2720, -0.1863, -0.7383, -0.5029, -0.7534, 0.3970, -0.7646, 0.4468, 1.2686]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
411

412
        callback_fn.has_been_called = False
413
414

        pipe = StableDiffusionPipeline.from_pretrained(
415
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
416
417
418
419
420
        )
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

421
422
423
424
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == inputs["num_inference_steps"]
425
426
427
428
429
430

    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

431
        pipe = StableDiffusionPipeline.from_pretrained(
432
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
433
434
435
436
437
        )
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()
438

439
440
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
441
442
443
444

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9
445

446
447
448
449
450
451
452
453
454
455
456
457
458
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-base",
            torch_dtype=torch.float16,
        )
459
        pipe.unet.set_default_attn_processor()
460
461
462
463
464
465
466
467
468
469
470
471
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        outputs = pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-base",
            torch_dtype=torch.float16,
        )
472
        pipe.unet.set_default_attn_processor()
473
474
475
476
477
478
479

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
480
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
481
482
483
        outputs_offloaded = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

484
485
486
487
        images = outputs.images
        images_offloaded = outputs_offloaded.images
        max_diff = numpy_cosine_similarity_distance(images.flatten(), images_offloaded.flatten())
        assert max_diff < 1e-3
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
        assert mem_bytes_offloaded < mem_bytes
        assert mem_bytes_offloaded < 3 * 10**9
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
            assert module.device == torch.device("cpu")

        # With attention slicing
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_attention_slicing()
        _ = pipe(**inputs)
        mem_bytes_slicing = torch.cuda.max_memory_allocated()
        assert mem_bytes_slicing < mem_bytes_offloaded

503
504
505
506
507
508
509
510
511

@nightly
@require_torch_gpu
class StableDiffusion2PipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

512
513
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_2_0_default_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_0_base_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_2_1_default_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_euler(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_euler.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_dpm_multi.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3