test_stable_diffusion.py 24.4 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
22
23
24
25

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
26
    DPMSolverMultistepScheduler,
27
28
29
30
31
32
33
34
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
    logging,
)
35
from diffusers.utils import load_numpy, nightly, slow, torch_device
36
37
38
39
40
41
from diffusers.utils.testing_utils import (
    CaptureLogger,
    enable_full_determinism,
    numpy_cosine_similarity_distance,
    require_torch_gpu,
)
42

43
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
44
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
45
46


47
enable_full_determinism()
48
49


50
51
52
class StableDiffusion2PipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
53
    pipeline_class = StableDiffusionPipeline
54
55
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
56
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
57
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
58

59
    def get_dummy_components(self):
60
        torch.manual_seed(0)
61
        unet = UNet2DConditionModel(
62
63
64
65
66
67
68
69
70
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
            # SD2-specific config below
Will Berman's avatar
Will Berman committed
71
            attention_head_dim=(2, 4),
72
73
            use_linear_projection=True,
        )
74
75
76
77
78
79
80
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
81
        torch.manual_seed(0)
82
        vae = AutoencoderKL(
83
84
85
86
87
88
89
90
91
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=128,
        )
        torch.manual_seed(0)
92
        text_encoder_config = CLIPTextConfig(
93
94
95
96
97
98
99
100
101
102
103
104
105
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=512,
        )
106
        text_encoder = CLIPTextModel(text_encoder_config)
107
108
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
133
134
135

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
136
137
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
138
139
140
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

141
142
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
143
144
145
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
146
        expected_slice = np.array([0.5753, 0.6113, 0.5005, 0.5036, 0.5464, 0.4725, 0.4982, 0.4865, 0.4861])
147
148
149
150
151

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
152
153
154
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
155
156
157
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

158
159
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
160
161
162
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
163
        expected_slice = np.array([0.5121, 0.5714, 0.4827, 0.5057, 0.5646, 0.4766, 0.5189, 0.4895, 0.4990])
164

165
166
167
168
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
169
170
171
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
172
173
174
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

175
176
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
177
178
179
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
180
        expected_slice = np.array([0.4865, 0.5439, 0.4840, 0.4995, 0.5543, 0.4846, 0.5199, 0.4942, 0.5061])
181

182
183
184
185
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
186
187
188
        components = self.get_dummy_components()
        components["scheduler"] = EulerAncestralDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
189
190
191
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

192
193
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
194
195
196
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
197
        expected_slice = np.array([0.4864, 0.5440, 0.4842, 0.4994, 0.5543, 0.4846, 0.5196, 0.4942, 0.5063])
198

199
200
201
202
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
203
204
205
        components = self.get_dummy_components()
        components["scheduler"] = EulerDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
206
207
208
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

209
210
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
211
212
213
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
214
        expected_slice = np.array([0.4865, 0.5439, 0.4840, 0.4995, 0.5543, 0.4846, 0.5199, 0.4942, 0.5061])
215

216
217
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    def test_stable_diffusion_unflawed(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        components["scheduler"] = DDIMScheduler.from_config(
            components["scheduler"].config, timestep_spacing="trailing"
        )
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["guidance_rescale"] = 0.7
        inputs["num_inference_steps"] = 10
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.4736, 0.5405, 0.4705, 0.4955, 0.5675, 0.4812, 0.5310, 0.4967, 0.5064])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

239
    def test_stable_diffusion_long_prompt(self):
240
241
242
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
243
244
245
246
247
248
249
250
251
252
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
253
            text_embeddings_3, negeative_text_embeddings_3 = sd_pipe.encode_prompt(
254
255
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
256
257
            if negeative_text_embeddings_3 is not None:
                text_embeddings_3 = torch.cat([negeative_text_embeddings_3, text_embeddings_3])
258
259
260

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
261
            text_embeddings, negative_embeddings = sd_pipe.encode_prompt(
262
263
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
264
265
            if negative_embeddings is not None:
                text_embeddings = torch.cat([negative_embeddings, text_embeddings])
266
267
268

        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
269
            text_embeddings_2, negative_text_embeddings_2 = sd_pipe.encode_prompt(
270
271
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
272
273
            if negative_text_embeddings_2 is not None:
                text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2])
274
275
276
277
278
279
280
281
282

        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77

        assert cap_logger.out == cap_logger_2.out
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25
        assert cap_logger_3.out == ""

283
284
285
286
287
288
    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

289
290
291

@slow
@require_torch_gpu
292
class StableDiffusion2PipelineSlowTests(unittest.TestCase):
293
294
295
296
297
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

298
299
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
300
301
302
303
304
305
306
307
308
309
310
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
311

312
313
314
315
    def test_stable_diffusion_default_ddim(self):
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
316

317
318
319
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
320
321

        assert image.shape == (1, 512, 512, 3)
322
        expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506])
323
        assert np.abs(image_slice - expected_slice).max() < 7e-3
324

325
326
327
328
329
    def test_stable_diffusion_pndm(self):
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
330

331
332
333
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
334
335

        assert image.shape == (1, 512, 512, 3)
336
        expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506])
337
        assert np.abs(image_slice - expected_slice).max() < 7e-3
338
339

    def test_stable_diffusion_k_lms(self):
340
341
342
343
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
344

345
346
347
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
348
349

        assert image.shape == (1, 512, 512, 3)
350
        expected_slice = np.array([0.10440, 0.13115, 0.11100, 0.10141, 0.11440, 0.07215, 0.11332, 0.09693, 0.10006])
351
        assert np.abs(image_slice - expected_slice).max() < 3e-3
352

353
    def test_stable_diffusion_attention_slicing(self):
354
        torch.cuda.reset_peak_memory_stats()
355
        pipe = StableDiffusionPipeline.from_pretrained(
356
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
357
        )
358
        pipe.unet.set_default_attn_processor()
359
        pipe = pipe.to(torch_device)
360
361
        pipe.set_progress_bar_config(disable=None)

362
        # enable attention slicing
363
        pipe.enable_attention_slicing()
364
365
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_sliced = pipe(**inputs).images
366
367
368

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
369
370
        # make sure that less than 3.3 GB is allocated
        assert mem_bytes < 3.3 * 10**9
371

372
        # disable slicing
373
        pipe.disable_attention_slicing()
374
        pipe.unet.set_default_attn_processor()
375
376
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
377

378
        # make sure that more than 3.3 GB is allocated
379
        mem_bytes = torch.cuda.max_memory_allocated()
380
381
        assert mem_bytes > 3.3 * 10**9
        assert np.abs(image_sliced - image).max() < 1e-3
382
383
384
385

    def test_stable_diffusion_text2img_intermediate_state(self):
        number_of_steps = 0

386
387
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
388
389
            nonlocal number_of_steps
            number_of_steps += 1
390
            if step == 1:
391
392
393
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
394
395
396
397
398
                expected_slice = np.array(
                    [-0.3862, -0.4507, -1.1729, 0.0686, -1.1045, 0.7124, -1.8301, 0.1903, 1.2773]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
399
            elif step == 2:
400
401
402
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
403
404
405
406
407
                expected_slice = np.array(
                    [0.2720, -0.1863, -0.7383, -0.5029, -0.7534, 0.3970, -0.7646, 0.4468, 1.2686]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
408

409
        callback_fn.has_been_called = False
410
411

        pipe = StableDiffusionPipeline.from_pretrained(
412
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
413
414
415
416
417
        )
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

418
419
420
421
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == inputs["num_inference_steps"]
422
423
424
425
426
427

    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

428
        pipe = StableDiffusionPipeline.from_pretrained(
429
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
430
431
432
433
434
        )
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()
435

436
437
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
438
439
440
441

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9
442

443
444
445
446
447
448
449
450
451
452
453
454
455
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-base",
            torch_dtype=torch.float16,
        )
456
        pipe.unet.set_default_attn_processor()
457
458
459
460
461
462
463
464
465
466
467
468
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        outputs = pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-base",
            torch_dtype=torch.float16,
        )
469
        pipe.unet.set_default_attn_processor()
470
471
472
473
474
475
476

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
477
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
478
479
480
        outputs_offloaded = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

481
482
483
484
        images = outputs.images
        images_offloaded = outputs_offloaded.images
        max_diff = numpy_cosine_similarity_distance(images.flatten(), images_offloaded.flatten())
        assert max_diff < 1e-3
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
        assert mem_bytes_offloaded < mem_bytes
        assert mem_bytes_offloaded < 3 * 10**9
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
            assert module.device == torch.device("cpu")

        # With attention slicing
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_attention_slicing()
        _ = pipe(**inputs)
        mem_bytes_slicing = torch.cuda.max_memory_allocated()
        assert mem_bytes_slicing < mem_bytes_offloaded

500
501
502
503
504
505
506
507
508

@nightly
@require_torch_gpu
class StableDiffusion2PipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

509
510
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_2_0_default_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_0_base_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_2_1_default_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_euler(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_euler.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_dpm_multi.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3