test_stable_diffusion.py 24.6 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
22
23
24
25

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
26
    DPMSolverMultistepScheduler,
27
28
29
30
31
32
33
34
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
    logging,
)
35
36
37
from diffusers.utils.testing_utils import (
    CaptureLogger,
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
38
39
    load_numpy,
    nightly,
40
41
    numpy_cosine_similarity_distance,
    require_torch_gpu,
Dhruv Nair's avatar
Dhruv Nair committed
42
43
    slow,
    torch_device,
44
)
45

46
47
48
49
50
51
from ..pipeline_params import (
    TEXT_TO_IMAGE_BATCH_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
    TEXT_TO_IMAGE_IMAGE_PARAMS,
    TEXT_TO_IMAGE_PARAMS,
)
52
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
53
54


55
enable_full_determinism()
56
57


58
59
60
class StableDiffusion2PipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
61
    pipeline_class = StableDiffusionPipeline
62
63
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
64
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
65
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
66
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS
67

68
    def get_dummy_components(self):
69
        torch.manual_seed(0)
70
        unet = UNet2DConditionModel(
71
72
73
74
75
76
77
78
79
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
            # SD2-specific config below
Will Berman's avatar
Will Berman committed
80
            attention_head_dim=(2, 4),
81
82
            use_linear_projection=True,
        )
83
84
85
86
87
88
89
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
90
        torch.manual_seed(0)
91
        vae = AutoencoderKL(
92
93
94
95
96
97
98
99
100
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=128,
        )
        torch.manual_seed(0)
101
        text_encoder_config = CLIPTextConfig(
102
103
104
105
106
107
108
109
110
111
112
113
114
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=512,
        )
115
        text_encoder = CLIPTextModel(text_encoder_config)
116
117
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

118
119
120
121
122
123
124
125
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
126
            "image_encoder": None,
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
143
144
145

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
146
147
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
148
149
150
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

151
152
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
153
154
155
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
156
        expected_slice = np.array([0.5753, 0.6113, 0.5005, 0.5036, 0.5464, 0.4725, 0.4982, 0.4865, 0.4861])
157
158
159
160
161

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
162
163
164
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
165
166
167
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

168
169
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
170
171
172
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
173
        expected_slice = np.array([0.5121, 0.5714, 0.4827, 0.5057, 0.5646, 0.4766, 0.5189, 0.4895, 0.4990])
174

175
176
177
178
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
179
180
181
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
182
183
184
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

185
186
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
187
188
189
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
190
        expected_slice = np.array([0.4865, 0.5439, 0.4840, 0.4995, 0.5543, 0.4846, 0.5199, 0.4942, 0.5061])
191

192
193
194
195
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
196
197
198
        components = self.get_dummy_components()
        components["scheduler"] = EulerAncestralDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
199
200
201
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

202
203
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
204
205
206
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
207
        expected_slice = np.array([0.4864, 0.5440, 0.4842, 0.4994, 0.5543, 0.4846, 0.5196, 0.4942, 0.5063])
208

209
210
211
212
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
213
214
215
        components = self.get_dummy_components()
        components["scheduler"] = EulerDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
216
217
218
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

219
220
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
221
222
223
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
224
        expected_slice = np.array([0.4865, 0.5439, 0.4840, 0.4995, 0.5543, 0.4846, 0.5199, 0.4942, 0.5061])
225

226
227
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    def test_stable_diffusion_unflawed(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        components["scheduler"] = DDIMScheduler.from_config(
            components["scheduler"].config, timestep_spacing="trailing"
        )
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["guidance_rescale"] = 0.7
        inputs["num_inference_steps"] = 10
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.4736, 0.5405, 0.4705, 0.4955, 0.5675, 0.4812, 0.5310, 0.4967, 0.5064])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

249
    def test_stable_diffusion_long_prompt(self):
250
251
252
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
253
254
255
256
257
258
259
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
260
        logger.setLevel(logging.WARNING)
261
262
263

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
264
            text_embeddings_3, negeative_text_embeddings_3 = sd_pipe.encode_prompt(
265
266
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
267
268
            if negeative_text_embeddings_3 is not None:
                text_embeddings_3 = torch.cat([negeative_text_embeddings_3, text_embeddings_3])
269
270
271

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
272
            text_embeddings, negative_embeddings = sd_pipe.encode_prompt(
273
274
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
275
276
            if negative_embeddings is not None:
                text_embeddings = torch.cat([negative_embeddings, text_embeddings])
277
278
279

        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
280
            text_embeddings_2, negative_text_embeddings_2 = sd_pipe.encode_prompt(
281
282
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
283
284
            if negative_text_embeddings_2 is not None:
                text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2])
285
286
287
288
289
290
291
292
293

        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77

        assert cap_logger.out == cap_logger_2.out
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25
        assert cap_logger_3.out == ""

294
295
296
297
298
299
    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

300
301
302

@slow
@require_torch_gpu
303
class StableDiffusion2PipelineSlowTests(unittest.TestCase):
304
305
306
307
308
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

309
310
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
311
312
313
314
315
316
317
318
319
320
321
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
322

323
324
325
326
    def test_stable_diffusion_default_ddim(self):
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
327

328
329
330
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
331
332

        assert image.shape == (1, 512, 512, 3)
333
        expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506])
334
        assert np.abs(image_slice - expected_slice).max() < 7e-3
335

336
337
338
339
340
    def test_stable_diffusion_pndm(self):
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
341

342
343
344
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
345
346

        assert image.shape == (1, 512, 512, 3)
347
        expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506])
348
        assert np.abs(image_slice - expected_slice).max() < 7e-3
349
350

    def test_stable_diffusion_k_lms(self):
351
352
353
354
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
355

356
357
358
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
359
360

        assert image.shape == (1, 512, 512, 3)
361
        expected_slice = np.array([0.10440, 0.13115, 0.11100, 0.10141, 0.11440, 0.07215, 0.11332, 0.09693, 0.10006])
362
        assert np.abs(image_slice - expected_slice).max() < 3e-3
363

364
    def test_stable_diffusion_attention_slicing(self):
365
        torch.cuda.reset_peak_memory_stats()
366
        pipe = StableDiffusionPipeline.from_pretrained(
367
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
368
        )
369
        pipe.unet.set_default_attn_processor()
370
        pipe = pipe.to(torch_device)
371
372
        pipe.set_progress_bar_config(disable=None)

373
        # enable attention slicing
374
        pipe.enable_attention_slicing()
375
376
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_sliced = pipe(**inputs).images
377
378
379

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
380
381
        # make sure that less than 3.3 GB is allocated
        assert mem_bytes < 3.3 * 10**9
382

383
        # disable slicing
384
        pipe.disable_attention_slicing()
385
        pipe.unet.set_default_attn_processor()
386
387
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
388

389
        # make sure that more than 3.3 GB is allocated
390
        mem_bytes = torch.cuda.max_memory_allocated()
391
        assert mem_bytes > 3.3 * 10**9
392
393
        max_diff = numpy_cosine_similarity_distance(image.flatten(), image_sliced.flatten())
        assert max_diff < 5e-3
394
395
396
397

    def test_stable_diffusion_text2img_intermediate_state(self):
        number_of_steps = 0

398
399
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
400
401
            nonlocal number_of_steps
            number_of_steps += 1
402
            if step == 1:
403
404
405
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
406
407
408
409
410
                expected_slice = np.array(
                    [-0.3862, -0.4507, -1.1729, 0.0686, -1.1045, 0.7124, -1.8301, 0.1903, 1.2773]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
411
            elif step == 2:
412
413
414
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
415
416
417
418
419
                expected_slice = np.array(
                    [0.2720, -0.1863, -0.7383, -0.5029, -0.7534, 0.3970, -0.7646, 0.4468, 1.2686]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
420

421
        callback_fn.has_been_called = False
422
423

        pipe = StableDiffusionPipeline.from_pretrained(
424
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
425
426
427
428
429
        )
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

430
431
432
433
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == inputs["num_inference_steps"]
434
435
436
437
438
439

    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

440
        pipe = StableDiffusionPipeline.from_pretrained(
441
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
442
443
444
445
446
        )
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()
447

448
449
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
450
451
452
453

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9
454

455
456
457
458
459
460
461
462
463
464
465
466
467
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-base",
            torch_dtype=torch.float16,
        )
468
        pipe.unet.set_default_attn_processor()
469
470
471
472
473
474
475
476
477
478
479
480
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        outputs = pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-base",
            torch_dtype=torch.float16,
        )
481
        pipe.unet.set_default_attn_processor()
482
483
484
485
486
487
488

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
489
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
490
491
492
        outputs_offloaded = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

493
494
495
496
        images = outputs.images
        images_offloaded = outputs_offloaded.images
        max_diff = numpy_cosine_similarity_distance(images.flatten(), images_offloaded.flatten())
        assert max_diff < 1e-3
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
        assert mem_bytes_offloaded < mem_bytes
        assert mem_bytes_offloaded < 3 * 10**9
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
            assert module.device == torch.device("cpu")

        # With attention slicing
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_attention_slicing()
        _ = pipe(**inputs)
        mem_bytes_slicing = torch.cuda.max_memory_allocated()
        assert mem_bytes_slicing < mem_bytes_offloaded

512
513
514
515
516
517
518
519
520

@nightly
@require_torch_gpu
class StableDiffusion2PipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

521
522
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_2_0_default_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_0_base_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_2_1_default_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_euler(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_euler.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_dpm_multi.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3