graphsage.py 5.58 KB
Newer Older
hbsun2113's avatar
hbsun2113 committed
1
2
3
4
5
6
7
8
9
"""
Inductive Representation Learning on Large Graphs
Paper: http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
Code: https://github.com/williamleif/graphsage-simple
Simple reference implementation of GraphSAGE.
"""
import argparse
import time
import numpy as np
10
import networkx as nx
hbsun2113's avatar
hbsun2113 committed
11
12
13
14
15
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
16
from dgl.nn.pytorch.conv import SAGEConv
hbsun2113's avatar
hbsun2113 committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30


class GraphSAGE(nn.Module):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout,
                 aggregator_type):
        super(GraphSAGE, self).__init__()
        self.layers = nn.ModuleList()
31
        self.g = g
hbsun2113's avatar
hbsun2113 committed
32
33

        # input layer
34
        self.layers.append(SAGEConv(in_feats, n_hidden, aggregator_type, feat_drop=dropout, activation=activation))
hbsun2113's avatar
hbsun2113 committed
35
36
        # hidden layers
        for i in range(n_layers - 1):
37
            self.layers.append(SAGEConv(n_hidden, n_hidden, aggregator_type, feat_drop=dropout, activation=activation))
hbsun2113's avatar
hbsun2113 committed
38
        # output layer
39
        self.layers.append(SAGEConv(n_hidden, n_classes, aggregator_type, feat_drop=dropout, activation=None)) # activation None
hbsun2113's avatar
hbsun2113 committed
40
41
42
43

    def forward(self, features):
        h = features
        for layer in self.layers:
44
            h = layer(self.g, h)
hbsun2113's avatar
hbsun2113 committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
        return h


def evaluate(model, features, labels, mask):
    model.eval()
    with torch.no_grad():
        logits = model(features)
        logits = logits[mask]
        labels = labels[mask]
        _, indices = torch.max(logits, dim=1)
        correct = torch.sum(indices == labels)
        return correct.item() * 1.0 / len(labels)

def main(args):
    # load and preprocess dataset
    data = load_data(args)
    features = torch.FloatTensor(data.features)
    labels = torch.LongTensor(data.labels)
63
64
65
66
67
68
69
70
    if hasattr(torch, 'BoolTensor'):
        train_mask = torch.BoolTensor(data.train_mask)
        val_mask = torch.BoolTensor(data.val_mask)
        test_mask = torch.BoolTensor(data.test_mask)
    else:
        train_mask = torch.ByteTensor(data.train_mask)
        val_mask = torch.ByteTensor(data.val_mask)
        test_mask = torch.ByteTensor(data.test_mask)
hbsun2113's avatar
hbsun2113 committed
71
72
73
74
75
76
77
78
79
80
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
Zihao Ye's avatar
Zihao Ye committed
81
82
83
           train_mask.int().sum().item(),
           val_mask.int().sum().item(),
           test_mask.int().sum().item()))
hbsun2113's avatar
hbsun2113 committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
        train_mask = train_mask.cuda()
        val_mask = val_mask.cuda()
        test_mask = test_mask.cuda()
        print("use cuda:", args.gpu)

    # graph preprocess and calculate normalization factor
98
    g = data.graph
99
    g.remove_edges_from(nx.selfloop_edges(g))
100
    g = DGLGraph(g)
hbsun2113's avatar
hbsun2113 committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    n_edges = g.number_of_edges()

    # create GraphSAGE model
    model = GraphSAGE(g,
                      in_feats,
                      args.n_hidden,
                      n_classes,
                      args.n_layers,
                      F.relu,
                      args.dropout,
                      args.aggregator_type
                      )

    if cuda:
        model.cuda()
    loss_fcn = torch.nn.CrossEntropyLoss()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        acc = evaluate(model, features, labels, val_mask)
        print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
              "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(),
                                            acc, n_edges / np.mean(dur) / 1000))

    print()
    acc = evaluate(model, features, labels, test_mask)
    print("Test Accuracy {:.4f}".format(acc))


if __name__ == '__main__':
149
    parser = argparse.ArgumentParser(description='GraphSAGE')
hbsun2113's avatar
hbsun2113 committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
                        help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
                        help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
                        help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
                        help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
                        help="number of hidden gcn layers")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
                        help="Weight for L2 loss")
165
166
    parser.add_argument("--aggregator-type", type=str, default="gcn",
                        help="Aggregator type: mean/gcn/pool/lstm")
hbsun2113's avatar
hbsun2113 committed
167
168
169
170
    args = parser.parse_args()
    print(args)

    main(args)